Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
NPJ Genom Med ; 8(1): 40, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001126

RESUMO

Somatic PTEN mutations are common and have driver function in some cancer types. However, in colorectal cancers (CRCs), somatic PTEN-inactivating mutations occur at a low frequency (~8-9%), and whether these mutations are actively selected and promote tumor aggressiveness has been controversial. Analysis of genomic data from ~53,000 CRCs indicates that hotspot mutation patterns in PTEN partially reflect DNA-dependent selection pressures, but also suggests a strong selection pressure based on protein function. In microsatellite stable (MSS) tumors, PTEN alterations co-occur with mutations activating BRAF or PI3K, or with TP53 deletions, but not in CRC with microsatellite instability (MSI). Unexpectedly, PTEN deletions are associated with poor survival in MSS CRC, whereas PTEN mutations are associated with improved survival in MSI CRC. These and other data suggest use of PTEN as a prognostic marker is valid in CRC, but such use must consider driver mutation landscape, tumor subtype, and category of PTEN alteration.

2.
JCO Precis Oncol ; 7: e2300091, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37992259

RESUMO

PURPOSE: Poly ADP-ribose polymerase inhibitors (PARPi) are approved for patients with human epidermal growth factor receptor 2-negative metastatic breast cancer (mBC) and germline pathogenic/likely pathogenic variant (hereafter mutation) in the BRCA1/2 genes (gBRCA); however, clinical benefit has also been demonstrated in mBC with somatic BRCA1/2 mutations (sBRCA) or germline PALB2 mutations (gPALB2). This study aims to describe the genomic landscape of homologous recombination repair (HRR) gene alterations in mBC and assess PARPi treatment outcomes for patients with gBRCA compared with other HRR genes and by status of a novel homologous recombination deficiency signature (HRDsig). METHODS: A real-world (RW) clinico-genomic database (CGDB) of comprehensive genomic profiling (CGP) linked to deidentified, electronic health record-derived clinical data was used. CGP was analyzed for HRR genes and HRDsig. The CGDB enabled cohort characterization and outcomes analyses of 177 patients exposed to PARPi. RW progression-free survival (rwPFS) and RW overall survival (rwOS) were compared. RESULTS: Of 28,920 patients with mBC, gBRCA was detected in 3.4%, whereas the population with any BRCA alteration or gPALB2 increased to 9.5%. HRDsig+ represented 21% of patients with mBC. BRCA and gPALB2 had higher levels of biallelic loss and HRDsig+ than other HRR alterations. Outcomes on PARPi were assessed for 177 patients, and gBRCA and sBRCA/gPALB2 cohorts were similar: gBRCA versus sBRCA/gPALB2 rwPFS was 6.3 versus 5.4 months (hazard ratio [HR], 1.37 [0.77-2.43]); rwOS was 16.2 versus 21.2 months (HR, 1.45 [0.74-2.86]). Additionally, patients with HRDsig+ versus HRDsig- had longer rwPFS (6.3 v 2.8 months; HR, 0.62 [0.42-0.92]) and numerically longer rwOS (17.8 v 13.0 months; HR, 0.72 [0.46-1.14]). CONCLUSION: Patients with sBRCA and gPALB2 derive similar benefit from PARPi as those with gBRCA alterations. In combination, HRDsig+, sBRCA, and gPALB2 represent an additional 19% of mBC that can potentially benefit from PARPi. Randomized trials exploring a more inclusive biomarker such as HRDsig are warranted.


Assuntos
Neoplasias da Mama , Recombinação Homóloga , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Genes BRCA1 , Genes BRCA2 , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética , Mutação em Linhagem Germinativa , Masculino , Adulto , Pessoa de Meia-Idade , Idoso
3.
Cancer Cell ; 41(11): 1963-1971.e3, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37890492

RESUMO

Cancer genomes from patients with African (AFR) ancestry have been poorly studied in clinical research. We leverage two large genomic cohorts to investigate the relationship between genomic alterations and AFR ancestry in six common cancers. Cross-cancer type associations, such as an enrichment of MYC amplification with AFR ancestry in lung, breast, and prostate cancers, and depletion of BRAF alterations are observed in colorectal and pancreatic cancers. There are differences in actionable alterations, such as depletion of KRAS G12C and EGFR L858R, and enrichment of ROS1 fusion with AFR ancestry in lung cancers. Interestingly, in lung cancer, KRAS mutations are less common in both smokers and non-smokers with AFR ancestry, whereas the association of TP53 mutations with AFR ancestry is only seen in smokers, suggesting an ancestry-environment interaction that modifies driver rates. Our study highlights the need to increase representation of patients with AFR ancestry in drug development and biomarker discovery.


Assuntos
Neoplasias Pulmonares , Proteínas Tirosina Quinases , Masculino , Humanos , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação
4.
JCO Precis Oncol ; 7: e2300093, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37769224

RESUMO

PURPOSE: Copy-number (CN) features reveal the molecular state of cancers and may have predictive and prognostic value in the treatment of cancer. We sought to apply published CN analysis methods to a large pan-cancer data set and characterize ubiquitous CN signatures across tumor types, including potential utility for treatment selection. METHODS: We analyzed the landscape of CN features in 260,333 pan-cancer samples. We examined the association of 10 signatures with genomic alterations and clinical characteristics and trained a machine learning classifier using CN and insertion and deletion features to detect homologous recombination deficiency signature (HRDsig) positivity. Clinical outcomes were assessed using a real-world clinicogenomic database (CGDB) of comprehensive genomic profiling linked to deidentified, electronic health record-derived clinical data. RESULTS: CN signatures were prevalent across cancer types and associated with diverse processes including focal tandem duplications, seismic amplifications, genome-wide loss of heterozygosity (gLOH), and HRD. Our novel HRDsig outperformed gLOH in predicting BRCAness and effectively distinguished biallelic BRCA and homologous recombination-repair wild-type (HRRwt) samples pan-tumor, demonstrating high sensitivity to detect biallelic BRCA in ovarian (93%) and other HRD-associated cancers (80%-87%). Pan-tumor prevalence of HRDsig was 6.4%. HRRwt cases represented a significant fraction of the HRDsig-positive cohort, likely reflecting a population with nongenomic mechanisms of HRD. In ovarian and prostate CGDBs, HRDsig identified more patients than gLOH and had predictive value for poly (ADP-ribose) polymerase inhibitor (PARPi) benefit. CONCLUSION: Tumor CN profiles are informative, revealing diverse processes active in cancer. We describe the landscape of 10 CN signatures in a large pan-cancer cohort, including two associated with HRD. We trained a machine learning-based HRDsig that robustly identified BRCAness and associated with biallelic BRCA pan-tumor, and was predictive of PARPi benefit in real-world ovarian and prostate data sets.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Masculino , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Ribose/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Antineoplásicos/uso terapêutico , Reparo de DNA por Recombinação , Biomarcadores
5.
NPJ Genom Med ; 8(1): 26, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709802

RESUMO

Tumor cells need to activate a telomere maintenance mechanism, enabling limitless replication. The bulk of evidence supports that sarcomas predominantly use alternative lengthening of telomeres (ALT) mechanism, commonly associated with alterations in ATRX and DAXX. In our dataset, only 12.3% of sarcomas harbored alterations in these genes. Thus, we checked for the presence of other genomic determinants of high telomeric content in sarcomas. Our dataset consisted of 13555 sarcoma samples, sequenced as a part of routine clinical care on the FoundationOne®Heme platform. We observed a median telomeric content of 622.3 telomeric reads per GC-matched million reads (TRPM) across all samples. In agreement with previous studies, telomeric content was significantly higher in ATRX altered and POT1 altered sarcomas. We further observed that sarcomas with alterations in RAD51B or GID4 were enriched in samples with high telomeric content, specifically within uterus leiomyosarcoma for RAD51B and soft tissue sarcoma (not otherwise specified, nos) for GID4, Furthermore, RAD51B and POT1 alterations were mutually exclusive with ATRX and DAXX alterations, suggestive of functional redundancy. Our results propose a role played by RAD51B and GID4 in telomere elongation in sarcomas and open research opportunities for agents aimed at targeting this critical pathway in tumorigenesis.

6.
J Immunother Cancer ; 11(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37586768

RESUMO

BACKGROUND: Pembrolizumab is FDA approved for tumors with tumor mutational burden (TMB) of ≥10 mutations/megabase (mut/Mb). However, the response to immune checkpoint inhibitors (ICI) varies significantly among cancer histologies. We describe the landscape of frameshift mutations (FSs) and evaluated their role as a predictive biomarker to ICI in a clinical cohort of patients. METHODS: Comprehensive genomic profiling was performed on a cohort of solid tumor samples examining at least 324 genes. The clinical cohort included patients with metastatic solid malignancies who received ICI monotherapy and had tumor sequencing. Progression-free survival (PFS), overall survival, and objective response rates (ORR) were compared between the groups. RESULTS: We analyzed 246,252 microsatellite stable (MSS) and 4561 samples with microsatellite instability across solid tumors. Histologies were divided into groups according to TMB and FS. MSS distribution: TMB-L (<10 mut/Mb)/FS-A (absent FS) (N=111,065, 45%), TMB-H (≥10 mut/Mb)/FS-A (N=15,313, 6%), TMB-L/FS-P (present ≥1 FS) (N=98,389, 40%) and TMB-H/FS-P (N=21,485, 9%). FSs were predominantly identified in the p53 pathway. In the clinical cohort, 212 patients were included. Groups: TMB-L/FS-A (N=80, 38%), TMB-H/FS-A (N=36, 17%), TMB-L/FS-P (N=57, 27%), TMB-H/FS-P (N=39, 18%). FSs were associated with a higher ORR to ICI, 23.8% vs 12.8% (p=0.02). TMB-L/FS-P had superior median PFS (5.1 months) vs TMB-L/FS-A (3.6 months, p<0.01). The 12-month PFS probability was 34% for TMB-L/FS-P vs 17.1% for TMB-L/FS-A. CONCLUSIONS: FSs are found in 47% of patients with MSS/TMB-L solid tumors in a pan-cancer cohort. FS may complement TMB in predicting immunotherapy responses, particularly for tumors with low TMB.


Assuntos
Segunda Neoplasia Primária , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Mutação da Fase de Leitura , Neoplasias/tratamento farmacológico , Neoplasias/genética , Imunoterapia
7.
J Immunother Precis Oncol ; 6(3): 127-132, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37637234

RESUMO

Introduction: Allogeneic hematopoietic stem cell transplantation (allo-HSCT) can cure patients with high-risk myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). However, many patients relapse or develop debilitating graft-versus-host disease. Transplant restores T-cell reactivity against tumor cells, implicating patient human leukocyte antigen (HLA)-dependent antigen presentation via the major histocompatibility complex as a determinant of response. We sought to identify characteristics of the HLA genotype that influence response in allo-HSCT patients. Methods: We collected HLA genotype and panel-based somatic mutation profiles for 55 patients with AML and MDS and available data treated at the University of California San Diego Moores Cancer Center between May 2012 and January 2019. We evaluated characteristics of the HLA genotype relative to relapse-free time and overall survival (OS) post-allo-HSCT using univariable and multivariable regression. Results: In multivariable regression, the presence of an autoimmune allele was significantly associated with relapse-free time (hazard ratio [HR], 0.25; p = 0.01) and OS (HR, 0.16; p < 0.005). The better potential of the donor HLA type to present peptides harboring driver mutations trended toward better relapse-free survival (HR, 0.45; p = 0.07) and significantly correlated with longer OS (HR, 0.33; p = 0.01) though only a minority of cases had an HLA mismatch. Conclusion: In this single institution retrospective study of patients receiving allo-HSCT for relapsed AML/MDS, characteristics of an individual's HLA genotype (presence of an autoimmune allele and potential of the donor HLA to better present peptides representing driver mutations) were significantly associated with better outcomes. These findings suggest that HLA type may guide the optimal application of allo-HSCT and merit evaluation in larger cohorts. ClinicalTrials.gov Identifier: NCT02478931.

8.
Neuro Oncol ; 25(12): 2221-2236, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-37436963

RESUMO

BACKGROUND: Schwannomas are common peripheral nerve sheath tumors that can cause severe morbidity given their stereotypic intracranial and paraspinal locations. Similar to many solid tumors, schwannomas and other nerve sheath tumors are primarily thought to arise due to aberrant hyperactivation of the RAS growth factor signaling pathway. Here, we sought to further define the molecular pathogenesis of schwannomas. METHODS: We performed comprehensive genomic profiling on a cohort of 96 human schwannomas, as well as DNA methylation profiling on a subset. Functional studies including RNA sequencing, chromatin immunoprecipitation-DNA sequencing, electrophoretic mobility shift assay, and luciferase reporter assays were performed in a fetal glial cell model following transduction with wildtype and tumor-derived mutant isoforms of SOX10. RESULTS: We identified that nearly one-third of sporadic schwannomas lack alterations in known nerve sheath tumor genes and instead harbor novel recurrent in-frame insertion/deletion mutations in SOX10, which encodes a transcription factor responsible for controlling Schwann cell differentiation and myelination. SOX10 indel mutations were highly enriched in schwannomas arising from nonvestibular cranial nerves (eg facial, trigeminal, vagus) and were absent from vestibular nerve schwannomas driven by NF2 mutation. Functional studies revealed these SOX10 indel mutations have retained DNA binding capacity but impaired transactivation of glial differentiation and myelination gene programs. CONCLUSIONS: We thus speculate that SOX10 indel mutations drive a unique subtype of schwannomas by impeding proper differentiation of immature Schwann cells.


Assuntos
Neoplasias de Bainha Neural , Neurilemoma , Neuroma Acústico , Humanos , Mutação INDEL , Ativação Transcricional , Neurilemoma/genética , Neurilemoma/patologia , Neuroma Acústico/patologia , Mutação , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo
9.
Oncologist ; 28(8): 691-698, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37354528

RESUMO

BACKGROUND: Pancreatic cancer (PC) represents an aggressive disease with median overall survival (OS) of less than 1 year in the front-line setting. FOLFIRINOX and gemcitabine and paclitaxel (GP) are standard of care options for these patients; however, optimal selection of therapy is challenging. METHODS: Comprehensive genomic profiling was performed on 8358 PC patients. Outcomes were available for 1149 metastatic PC patients treated with 1L FOLFIRINOX or GP. A scar-based measure of HRD was called using a machine learning-based algorithm incorporating copy number and indel features. RESULTS: A scar-based HRD signature (HRDsig) was identified in 9% of patients. HRDsig significantly co-occurred with biallelic alterations in BRCA1/2, PALB2, BARD1, and RAD51C/D, but encompassed a larger population than that defined by BRCA1/BRCA2/PALB2 (9% vs. 6%). HRDsig was predictive of 1L FOLFIRNOX chemotherapy benefit with doubled OS relative to gemcitabine and paclitaxel (GP) (rwOS aHR 0.37 [0.22-0.62]), including 25% of the population with long-term (2 year+) survival in a real-world cohort of patients. Less benefit from FOLFIRINOX was observed in the HRDsig(-) population. Predictive value was seen in both the BRCA1/2/PALB2 mutant and wildtype populations, suggesting additional value to mutational profiling. CONCLUSION: A scar-based HRD biomarker was identified in a significant fraction of PC patients and is predictive of FOLFIRINOX benefit. Incorporating a biomarker like HRDsig could identify the right patients for platinum chemotherapy and potentially reduce FOLFIRINOX use by over 40%, minimizing toxicities with similar survival outcomes. Confirmatory studies should be performed.


Assuntos
Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proteína BRCA1/genética , Gencitabina , Cicatriz/induzido quimicamente , Cicatriz/tratamento farmacológico , Cicatriz/patologia , Estudos Retrospectivos , Proteína BRCA2/genética , Fluoruracila , Leucovorina , Desoxicitidina , Paclitaxel , Albuminas , Neoplasias Pancreáticas
10.
Lancet Digit Health ; 5(6): e380-e389, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37236698

RESUMO

BACKGROUND: Men of African ancestry experience the greatest burden of prostate cancer globally, but they are under-represented in genomic and precision medicine studies. Therefore, we sought to characterise the genomic landscape, comprehensive genomic profiling (CGP) utilisation patterns, and treatment patterns across ancestries in a large, diverse, advanced prostate cancer cohort, to determine the impact of genomics on ancestral disparities. METHODS: In this large-scale retrospective analysis, the CGP-based genomic landscape was evaluated in biopsy sections from 11 741 patients with prostate cancer, with ancestry inferred using a single nucleotide polymorphism-based approach. Admixture-derived ancestry fractions for each patient were also interrogated. Independently, clinical and treatment information was retrospectively reviewed for 1234 patients in a de-identified US-based clinicogenomic database. Prevalence of gene alterations, including actionable gene alterations, was assessed across ancestries (n=11 741). Furthermore, real-world treatment patterns and overall survival was assessed in the subset of patients with linked clincogenomic information (n=1234). FINDINGS: The CGP cohort included 1422 (12%) men of African ancestry and 9244 (79%) men of European ancestry; the clinicogenomic database cohort included 130 (11%) men of African ancestry and 1017 (82%) men of European ancestry. Men of African ancestry received more lines of therapy before CGP than men of European ancestry (median of two lines [IQR 0-8] vs one line [0-10], p=0·029). In genomic analyses, ancestry-specific mutational landscapes were observed, but the prevalence of alterations in AR, the DNA damage response pathway, and other actionable genes were similar across ancestries. Similar genomic landscapes were observed in analyses that accounted for admixture-derived ancestry fractions. After undergoing CGP, men of African ancestry were less likely to receive a clinical study drug compared with men of European ancestry (12 [10%] of 118 vs 246 [26%] of 938, p=0·0005). INTERPRETATION: Similar rates of gene alterations with therapy implications suggest that differences in actionable genes (including AR and DNA damage response pathway genes) might not be a main driver of disparities across ancestries in advanced prostate cancer. Later CGP utilisation and a lower rate of clinical trial enrolment observed in men of African ancestry could affect genomics, outcomes, and disparities. FUNDING: American Society for Radiation Oncology, Department of Defense, Flatiron Health, Foundation Medicine, Prostate Cancer Foundation, and Sylvester Comprehensive Cancer Center.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Estados Unidos , Estudos Retrospectivos , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapia , Medicina de Precisão , Genômica
11.
Cancer Discov ; 13(7): 1572-1591, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37062002

RESUMO

Small cell lung cancer (SCLC) is a recalcitrant neuroendocrine carcinoma with dismal survival outcomes. A major barrier in the field has been the relative paucity of human tumors studied. Here we provide an integrated analysis of 3,600 "real-world" SCLC cases. This large cohort allowed us to identify new recurrent alterations and genetic subtypes, including STK11-mutant tumors (1.7%) and TP53/RB1 wild-type tumors (5.5%), as well as rare cases that were human papillomavirus-positive. In our cohort, gene amplifications on 4q12 are associated with increased overall survival, whereas CCNE1 amplification is associated with decreased overall survival. We also identify more frequent alterations in the PTEN pathway in brain metastases. Finally, profiling cases of SCLC containing oncogenic drivers typically associated with NSCLC demonstrates that SCLC transformation may occur across multiple distinct molecular cohorts of NSCLC. These novel and unsuspected genetic features of SCLC may help personalize treatment approaches for this fatal form of cancer. SIGNIFICANCE: Minimal changes in therapy and survival outcomes have occurred in SCLC for the past four decades. The identification of new genetic subtypes and novel recurrent mutations as well as an improved understanding of the mechanisms of transformation to SCLC from NSCLC may guide the development of personalized therapies for subsets of patients with SCLC. This article is highlighted in the In This Issue feature, p. 1501.


Assuntos
Carcinoma Neuroendócrino , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/patologia , Neoplasias Pulmonares/patologia , Mutação , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Neuroendócrino/genética
12.
Sci Rep ; 13(1): 4404, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36927889

RESUMO

Treatment of non-small cell lung cancer is increasingly biomarker driven with multiple genomic alterations, including those in the epidermal growth factor receptor (EGFR) gene, that benefit from targeted therapies. We developed a set of algorithms to assess EGFR status and morphology using a real-world advanced lung adenocarcinoma cohort of 2099 patients with hematoxylin and eosin (H&E) images exhibiting high morphological diversity and low tumor content relative to public datasets. The best performing EGFR algorithm was attention-based and achieved an area under the curve (AUC) of 0.870, a negative predictive value (NPV) of 0.954 and a positive predictive value (PPV) of 0.410 in a validation cohort reflecting the 15% prevalence of EGFR mutations in lung adenocarcinoma. The attention model outperformed a heuristic-based model focused exclusively on tumor regions, and we show that although the attention model also extracts signal primarily from tumor morphology, it extracts additional signal from non-tumor tissue regions. Further analysis of high-attention regions by pathologists showed associations of predicted EGFR negativity with solid growth patterns and higher peritumoral immune presence. This algorithm highlights the potential of deep learning tools to provide instantaneous rule-out screening for biomarker alterations and may help prioritize the use of scarce tissue for biomarker testing.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/patologia , Mutação , Adenocarcinoma de Pulmão/patologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Estudos Retrospectivos
13.
Cancer Res ; 83(9): 1531-1542, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35503682

RESUMO

Amplification of HER2 can drive the proliferation of cancer cells, and several inhibitors of HER2 have been successfully developed. Recent advances in next-generation sequencing now reveal that HER2 is subject to mutation, with over 2,000 unique variants observed in human cancers. Several examples of oncogenic HER2 mutations have been described, and these primarily occur at allosteric sites outside the ATP-binding site. To identify the full spectrum of oncogenic HER2 driver mutations aside from a few well-studied mutations, we developed mutation-allostery-pharmacology (MAP), an in silico prediction algorithm based on machine learning. By applying this computational approach to 820 single-nucleotide variants, a list of 222 known and potential driver mutations was produced. Of these 222 mutations, 111 were screened by Ba/F3-retrovirus proliferation assays; 37 HER2 mutations were experimentally determined to be driver mutations, comprising 15 previously characterized and 22 newly identified oncogenic mutations. These oncogenic mutations mostly affected allosteric sites in the extracellular domain (ECD), transmembrane domain, and kinase domain of HER2, with only a single mutation in the HER2 orthosteric ATP site. Covalent homodimerization was established as a common mechanism of activation among HER2 ECD allosteric mutations, including the most prevalent HER2 mutation, S310F. Furthermore, HER2 allosteric mutants with enhanced covalent homodimerization were characterized by altered pharmacology that reduces the activity of existing anti-HER2 agents, including the mAb trastuzumab and the tyrosine kinase inhibitor lapatinib. Overall, the MAP-scoring and functional validation analyses provided new insights into the oncogenic activity and therapeutic targeting of HER2 mutations in cancer. SIGNIFICANCE: This study identified new oncogenic HER2 allosteric mutations, including ECD mutations that share covalent dimerization as a mechanism of oncogenicity, suggesting the need for novel inhibitors to treat HER2-mutant cancers.


Assuntos
Neoplasias , Receptor ErbB-2 , Humanos , Receptor ErbB-2/metabolismo , Quinazolinas/farmacologia , Regulação Alostérica , Neoplasias/genética , Inibidores de Proteínas Quinases/farmacologia , Mutação , Trifosfato de Adenosina
14.
Oncologist ; 28(1): 33-39, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35962742

RESUMO

OBJECTIVE: The majority of tumor sequencing currently performed on cancer patients does not include a matched normal control, and in cases where germline testing is performed, it is usually run independently of tumor testing. The rates of concordance between variants identified via germline and tumor testing in this context are poorly understood. We compared tumor and germline sequencing results in patients with breast, ovarian, pancreatic, and prostate cancer who were found to harbor alterations in genes associated with homologous recombination deficiency (HRD) and increased hereditary cancer risk. We then evaluated the potential for a computational somatic-germline-zygosity (SGZ) modeling algorithm to predict germline status based on tumor-only comprehensive genomic profiling (CGP) results. METHODS: A retrospective chart review was performed using an academic cancer center's databases of somatic and germline sequencing tests, and concordance between tumor and germline results was assessed. SGZ modeling from tumor-only CGP was compared to germline results to assess this method's accuracy in determining germline mutation status. RESULTS: A total of 115 patients with 146 total alterations were identified. Concordance rates between somatic and germline alterations ranged from 0% to 85.7% depending on the gene and variant classification. After correcting for differences in variant classification and filtering practices, SGZ modeling was found to have 97.2% sensitivity and 90.3% specificity for the prediction of somatic versus germline origin. CONCLUSIONS: Mutations in HRD genes identified by tumor-only sequencing are frequently germline. Providers should be aware that technical differences related to assay design, variant filtering, and variant classification can contribute to discordance between tumor-only and germline sequencing test results. In addition, SGZ modeling had high predictive power to distinguish between mutations of somatic and germline origin without the need for a matched normal control, and could potentially be considered to inform clinical decision-making.


Assuntos
Neoplasias , Masculino , Humanos , Estudos Retrospectivos , Atenção Terciária à Saúde , Neoplasias/patologia , Genômica , Mutação , Mutação em Linhagem Germinativa
15.
Nat Commun ; 13(1): 7495, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36470901

RESUMO

Pathological and genomic profiling have transformed breast cancer care by matching patients to targeted treatments. However, tumors evolve and evade therapeutic interventions often through the acquisition of genomic mutations. Here we examine patients profiled with tissue (TBx) and liquid biopsy (LBx) as part of routine clinical care, to characterize the tumor evolutionary landscape and identify potential vulnerabilities in the relapsed setting. Real-world evidence demonstrates that LBx is utilized later in care and identifies associations with intervening therapy. While driver events are frequently shared, acquired LBx alterations are detected in a majority of patients, with the highest frequency in ER+ disease and in patients with longer biopsy intervals. Acquired mutations are often polyclonal and present at lower allelic fractions, suggesting multi-clonal convergent evolution. In addition to well-characterized resistance mutations (e.g., ESR1, NF1, RB1, ERBB2), we observe a diversity of rarer but potentially targetable mutations (e.g., PIK3CA, HRAS/NRAS/KRAS, FGFR1/2/3, BRAF) and fusions (e.g., FGFR1/2, ERBB2, RET), as well as BRCA1/2 reversions through a variety of mechanisms, including splice alterations and structural deletions. This study provides insights on treatment and selection-driven tumor evolution and identifies potential combinatorial treatment options in advanced breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/terapia , Neoplasias da Mama/tratamento farmacológico , Mutação , Biópsia Líquida , Biomarcadores Tumorais/genética
16.
NPJ Precis Oncol ; 6(1): 91, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494601

RESUMO

Recent clinical development of KRAS inhibitors has heightened interest in the genomic landscape of KRAS-altered cancers. We performed a pan-cancer analysis of KRAS-altered samples from 426,706 adult patients with solid or hematologic malignancies using comprehensive genomic profiling; additional analyses included 62,369 liquid biopsy and 7241 pediatric samples. 23% of adult pan-cancer samples had KRAS alterations; 88% were mutations, most commonly G12D/G12V/G12C/G13D/G12R, and prevalence was similar in liquid biopsies. Co-alteration landscapes were largely similar across KRAS mutations but distinct from KRAS wild-type, though differences were observed in some tumor types for tumor mutational burden, PD-L1 expression, microsatellite instability, and other mutational signatures. Prognosis of KRAS-mutant versus other genomic cohorts of lung, pancreatic, and colorectal cancer were assessed using a real-world clinicogenomic database. As specific KRAS inhibitors and combination therapeutic strategies are being developed, genomic profiling to understand co-alterations and other biomarkers that may modulate response to targeted or immunotherapies will be imperative.

17.
JCO Precis Oncol ; 6: e2200261, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36265119

RESUMO

PURPOSE: Profiling of circulating tumor DNA (ctDNA) is increasingly adopted in the management of solid tumors, concurrent with increased availability of more comprehensive ctDNA panels. However, variable ctDNA shed can result in variable assay sensitivity. We studied the relationship between ctDNA tumor fraction (TF) and detection of actionable alterations across cancer types. METHODS: A total of 23,482 liquid biopsies (LBx) submitted between September 2020 and October 2021 were sequenced using a hybrid capture panel that reports genomic alterations (GAs) and genomic biomarkers across 324 cancer-related genes. The primary end points were the prevalence of targetable GAs by cancer type and detection in relationship to ctDNA TF. Sensitivity of detection in LBx was assessed in 1,289 patients with available tissue results. RESULTS: 94% (n = 22,130) of LBx had detectable ctDNA, with a median TF of 2.2%. LBx profiling detected GAs in National Comprehensive Cancer Network category 1 genes in 37% of lung, 30% of prostate, 36% of breast, and 51% of colon cancer cases. Potential germline GAs flagged on clinical reports were detected in genes including BRCA1/2, PALB2, CHEK2, and ATM. Polyclonal mutations in genes associated with resistance such as AR, ESR1, RB1, and NF1 were detected. The sensitivity of LBx to detect driver alterations identified in tissue biopsy from the same patient ranged from 58% to 86% but was consistently at or near 100% in cases with TF ≥ 10%. CONCLUSION: Elevated ctDNA shed is associated with both high sensitivity and negative predictive value for detection of actionable GAs. The presence of elevated TF suggests adequate tumor profiling and may reduce the value of subsequent reflex to confirmatory tissue testing in patients with negative LBx results.


Assuntos
DNA Tumoral Circulante , Neoplasias , Humanos , Masculino , DNA Tumoral Circulante/genética , Neoplasias/diagnóstico , Biópsia Líquida , Biomarcadores Tumorais/genética , Genômica/métodos
18.
PLoS One ; 17(8): e0272707, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36006930

RESUMO

Telomerase-mediated lengthening is a mechanism by which some cancer cells avoid senescence-mediated cell cycle arrest due to shortened telomeres. By reverse transcribing an RNA template, encoded by TERC, the enzyme telomerase synthesizes the elongation of telomeric DNA using the 3' end of the chromosome as a primer. TERC harbors a highly conserved template region consisting of 11 nucleotides spanning hg19 coordinates chr3:169482793-169482803. In human cell lines, when TERC was mutated to alter its template region, telomerase generated the predicted mutant telomeric repeats. However, it is unknown if this can occur in human clinical samples. Here, we report on the rare occurrence of two tumor samples where TERC template mutations were reflected in telomeric repeats.


Assuntos
Neoplasias , Telomerase , Humanos , Mutação , Neoplasias/genética , RNA/genética , RNA/metabolismo , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo
19.
JCO Precis Oncol ; 6: e2100531, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35772050

RESUMO

PURPOSE: To examine the overlap of homologous recombination deficiency (HRD) and microsatellite instability high (MSI-H) status, and to dissect driver versus bystander status of BRCA1/2 mutations (BRCAm) in this context. METHODS: A pan-cancer comprehensive genomic profiling cohort (n = 213,199) was examined for overlap between BRCAm and MSI-H status. BRCA1/2 variant zygosity was examined and correlated with MSI-H status, tumor mutational burden, and genome-wide loss of heterozygosity (gLOH). Clinical histories of two patients with prostate cancer with co-occurring BRCAm and MSI-H are described. RESULTS: HRD and MSI-H phenotypes were generally mutually exclusive events (P < .001). BRCAm that co-occurred together with high tumor mutational burden or MSI-H were predominantly monoallelic bystander alterations. In breast, ovarian, and pancreatic cancers, very few BRCAm occurred in the context of MSI-H; however, in prostate cancer, 12.8% of BRCA1 and 3.4% of BRCA2 alterations co-occurred with MSI-H. In these BRCA-associated cancers, co-occurring BRCAm were generally monoallelic and were not associated with elevated gLOH. Two patients with prostate cancer with co-occurring BRCAm and MSI-H showed resistance to poly (ADP-ribose) polymerase inhibition but sensitivity to subsequent anti-programmed cell death protein 1 therapy. CONCLUSION: MSI-H status and HRD are generally mutually exclusive phenomena across cancer types, but may rarely co-occur, especially in prostate cancer. Although MSI-H samples had a higher BRCAm prevalence relative to microsatellite-stable tumors, these BRCA1/2 mutations were generally monoallelic and were not associated with elevated gLOH. Our findings suggest that most BRCAm coexisting with microsatellite instability are likely bystander events that may not result in sensitivity to poly (ADP-ribose) polymerase inhibitors.


Assuntos
Antineoplásicos , Proteína BRCA2/genética , Neoplasias da Próstata , Difosfato de Adenosina , Proteína BRCA1/genética , Humanos , Masculino , Instabilidade de Microssatélites , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases , Ribose
20.
Nat Commun ; 13(1): 3406, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705558

RESUMO

There are more than 70 distinct sarcomas, and this diversity complicates the development of precision-based therapeutics for these cancers. Prospective comprehensive genomic profiling could overcome this challenge by providing insight into sarcomas' molecular drivers. Through targeted panel sequencing of 7494 sarcomas representing 44 histologies, we identify highly recurrent and type-specific alterations that aid in diagnosis and treatment decisions. Sequencing could lead to refinement or reassignment of 10.5% of diagnoses. Nearly one-third of patients (31.7%) harbor potentially actionable alterations, including a significant proportion (2.6%) with kinase gene rearrangements; 3.9% have a tumor mutational burden ≥10 mut/Mb. We describe low frequencies of microsatellite instability (<0.3%) and a high degree of genome-wide loss of heterozygosity (15%) across sarcomas, which are not readily explained by homologous recombination deficiency (observed in 2.5% of cases). In a clinically annotated subset of 118 patients, we validate actionable genetic events as therapeutic targets. Collectively, our findings reveal the genetic landscape of human sarcomas, which may inform future development of therapeutics and improve clinical outcomes for patients with these rare cancers.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Sarcoma , Biomarcadores Tumorais/genética , Neoplasias Ósseas/genética , Genômica , Humanos , Mutação , Estudos Prospectivos , Sarcoma/diagnóstico , Sarcoma/genética , Sarcoma/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...