Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Purinergic Signal ; 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38151691

RESUMO

In the avian retina, ADP induces the proliferation of late developing glia progenitors. Here, we show that in serum-containing retinal cell cultures, ADP-induced increase in [3H]-thymidine incorporation can be prevented by the IGF-1 receptor antagonists AG1024 and I-OMe-Tyrphostin AG 538, suggesting the participation of IGF-1 in ADP-mediated progenitor proliferation. In contrast, no increase in [3H]-thymidine incorporation is observed in retinal cultures treated only with IGF-1. Under serum starvation, while no increase in cell proliferation is detected in cultures treated only with ADP or IGF-1, a significant increase in [3H]-thymidine incorporation and number of PCNA expressing cells is observed in cultures treated concomitantly with ADP plus IGF-1, suggesting that both molecules are required to induce proliferation of retinal progenitors. In serum-starved cultures, although an increase in cell viability is detected by MTT assays in IGF-1-treated cultures, no significant increase in viability of [3H]-thymidine labeled progenitors is observed, suggesting that IGF-1 may contribute to survival of postmitotic cells in culture. While only ADP increases intracellular calcium, only IGF-1 induces the phosphorylation of Akt in the retinal cultures. IGF-1 through the PI3K/Akt pathway induces a significant increase in the transcription and expression of CDK1 with a decrease in phospho-histone H3 expression that is concomitant with an increase in the expression of cyclins D1 and E and CDK2. These findings suggest that IGF-1 stimulates CDK-1 mRNA and protein expression that enable progenitors to progress through the cell cycle. However, signaling of ADP in the presence IGF-I seems to be required for DNA synthesis.

2.
Cell Mol Neurobiol ; 43(4): 1469-1485, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35925507

RESUMO

The active principles of Cannabis sativa are potential treatments for several diseases, such as pain, seizures and anorexia. With the increase in the use of cannabis for medicinal purposes, a more careful assessment of the possible impacts on embryonic development becomes necessary. Surveys indicate that approximately 3.9% of pregnant women use cannabis in a recreational and/or medicinal manner. However, although the literature has already described the presence of endocannabinoid system components since the early stages of CNS development, many of their physiological effects during this stage have not yet been established. Moreover, it is still uncertain how the endocannabinoid system can be altered in terms of cell proliferation and cell fate, neural migration, neural differentiation, synaptogenesis and particularly cell death. In relation to cell death in the CNS, knowledge about the effects of cannabinoids is scarce. Thus, the present work aims to review the role of the endocannabinoid system in different aspects of CNS development and discuss possible side effects or even opportunities for treating some conditions in the development of this tissue.


Assuntos
Canabinoides , Cannabis , Gravidez , Feminino , Humanos , Canabinoides/farmacologia , Endocanabinoides/metabolismo , Cannabis/metabolismo , Convulsões/induzido quimicamente , Proliferação de Células
3.
Mol Neurobiol ; 56(9): 6472-6486, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30838518

RESUMO

Development of progenitors in the embryonic retina is modulated by signaling molecules, and cannabinoid receptors are highly expressed in the early developing retina. Here, we investigated whether the CB1/CB2 receptor agonist WIN 5212-2 (WIN) modulated the proliferation, viability, and calcium responses in chick embryo retinal progenitors in culture. A decline in [3H]-thymidine incorporation was observed when cultures were incubated with 0.5-1.0 µM WIN, an effect that was mimicked by URB602 and URB597, inhibitors of the monoacylglycerol lipase and fatty acid amide hydrolase, respectively. A reduction in the number of proliferating cell nuclear antigen-positive nuclei was also noticed in WIN-treated cultures, suggesting that activation of cannabinoid receptors decreases the proliferation of cultured retinal progenitors. WIN (0.5-5.0 µM), but not capsaicin, decreased retinal cell viability, an effect that was blocked by CB1 and CB2 receptor antagonists and by the P2X7 receptor antagonist A438079, implicating this nucleotide receptor in the cannabinoid-mediated cell death. Treatment with WIN also induced an increase in mitochondrial superoxide and P2X7 receptor-mediated uptake of sulforhodamine B in the cultured cells. While a high proportion of cultured cells responded to glutamate, GABA, and 50 mM KCl with intracellular calcium shifts, very few cells responded to the activation of P2X7 receptors by ATP. Noteworthy, while decreasing the number of cells responding to glutamate, GABA, and KCl, treatment of the cultures with WIN induced a significant increase in the number of cells responding to 1 mM ATP, suggesting that activation of cannabinoid receptors primes P2X7 receptor calcium signaling in retinal progenitors in culture.


Assuntos
Apoptose/efeitos dos fármacos , Canabinoides/farmacologia , Neuroglia/citologia , Receptores Purinérgicos P2X7/metabolismo , Retina/citologia , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/metabolismo , Animais , Benzoxazinas/farmacologia , Cálcio/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Embrião de Galinha , Corantes Fluorescentes/metabolismo , Morfolinas/farmacologia , Naftalenos/farmacologia , Nestina/metabolismo , Fenótipo , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Células-Tronco/efeitos dos fármacos
4.
Purinergic Signal ; 11(2): 183-201, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25663277

RESUMO

When retinal cell cultures were mechanically scratched, cell growth over the empty area was observed. Only dividing and migrating, 2 M6-positive glial cells were detected. Incubation of cultures with apyrase (APY), suramin, or Reactive Blue 2 (RB-2), but not MRS 2179, significantly attenuated the growth of glial cells, suggesting that nucleotide receptors other than P2Y1 are involved in the growth of glial cells. UTPγS but not ADPßS antagonized apyrase-induced growth inhibition in scratched cultures, suggesting the participation of UTP-sensitive receptors. No decrease in proliferating cell nuclear antigen (PCNA(+)) cells was observed at the border of the scratch in apyrase-treated cultures, suggesting that glial proliferation was not affected. In apyrase-treated cultures, glial cytoplasm protrusions were smaller and unstable. Actin filaments were less organized and alfa-tubulin-labeled microtubules were mainly parallel to scratch. In contrast to control cultures, very few vinculin-labeled adhesion sites could be noticed in these cultures. Increased Akt and ERK phosphorylation was observed in UTP-treated cultures, effect that was inhibited by SRC inhibitor 1 and PI3K blocker LY294002. These inhibitors and the FAK inhibitor PF573228 also decreased glial growth over the scratch, suggesting participation of SRC, PI3K, and FAK in UTP-induced growth of glial cells in scratched cultures. RB-2 decreased dissociated glial cell attachment to fibronectin-coated dishes and migration through transwell membranes, suggesting that nucleotides regulated adhesion and migration of glial cells. In conclusion, mechanical scratch of retinal cell cultures induces growth of glial cells over the empty area through a mechanism that is dependent on activation of UTP-sensitive receptors, SRC, PI3K, and FAK.


Assuntos
Movimento Celular/efeitos dos fármacos , Neuroglia/citologia , Nucleotídeos/metabolismo , Retina/efeitos dos fármacos , Animais , Apirase/farmacologia , Movimento Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Galinhas , Cromonas/farmacologia , Morfolinas/farmacologia , Neurogênese/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Quinolonas/farmacologia , Retina/lesões , Transdução de Sinais/efeitos dos fármacos , Sulfonas/farmacologia , Suramina/farmacologia
5.
Int J Dev Neurosci ; 25(5): 283-91, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17570629

RESUMO

ATP is an important mitogen in the developing retina and its proliferative response decreases as chick retinal cells differentiate in culture. Both non-stimulated or ATP-induced proliferative response was abolished if cycling cells were cocultured with cells from older embryos or cultured with conditioned medium (CM) from postmitotic cells. The effect of CM was dose-dependent and reversible, as removal of CM from the cultures restored both basal and ATP-induced incorporation of [3H]-thymidine. The effect of CM was also dependent on the developmental stage of the retina used to prepare the medium. As tissues from older embryos were used, inhibition of the basal and ATP-induced proliferative response of the cells increased. Similar inhibition of ATP-induced increase in [3H]-thymidine incorporation was observed using CM from purified glial cultures. Neither ARL 67156, an ecto-ATPase inhibitor, prevented nor TGF-beta1 and TGF-beta2 mimicked the inhibitory effect of conditioned medium. Incubation of cells with CM or ATP for 24 h completely abolished the formation of [3H]-phosphoinositides induced by ATP. These effects were blocked by the P2 receptor antagonist PPADS and were not observed with dialysed CM, suggesting that agonist-dependent desensitization of P2 receptors occurred in cultures incubated with CM. However, removal of small molecules such as nucleotides by dialysis did not affect the decline in the proliferative activity induced by CM, suggesting that desensitization is not responsible for the conditioned medium-dependent cell cycle arrest of early developing retinal cells in culture. These results suggest that factors released from postmitotic cells induce the arrest of retinal cells in the mitotic state, a phenomenon that is concomitant with agonist-dependent P2 receptor desensitization.


Assuntos
Trifosfato de Adenosina/farmacologia , Proliferação de Células/efeitos dos fármacos , Mitose/fisiologia , Retina/citologia , Trifosfato de Adenosina/análogos & derivados , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Embrião de Galinha , Meios de Cultivo Condicionados , Neuroglia/metabolismo , Fosfatidilinositóis/metabolismo , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacologia , Receptores Purinérgicos P2/metabolismo , Retina/efeitos dos fármacos , Timidina/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta2/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...