Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytopathology ; 112(2): 232-237, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34181440

RESUMO

Gray mold caused by Botrytis cinerea is a common postharvest disease in strawberries, reducing shelf life considerably. We investigated the potential of the yeast-like biocontrol fungus Aureobasidium pullulans (AP-SLU6) vectored by bumblebees (Bombus terrestris) in the Flying Doctors® system to inhibit the pathogen and increase the shelf life of harvested strawberries (cultivar Sonata). Using bumblebees as vectors of various biocontrol agents is becoming increasingly popular, but any potentially negative effects on bee performance have been understudied. Our results show that, over the 4-week period of the trial, the performance and activity of the bees were not negatively affected by A. pullulans. The bees successfully picked up the powder formulation; then, they carried and deposited it on the flowers. The vectoring of the biocontrol agent significantly reduced gray mold development on the harvested fruits by 45% and increased shelf life by 100% in comparison with control treatments. This suggests that the biocontrol fungus applied during flowering successfully reduced Botrytis infection and thus, effectively protected the fruits from gray mold. In addition, the bee-vectored application of the biocontrol agent was found to be significantly more effective than spray application because the latter may temporarily increase humidity around the flower, thereby creating a suitable environment for the pathogen to thrive. In summary, our study demonstrates that A. pullulans vectored by bumblebees can decrease gray mold infection and improve the shelf life of strawberries without adversely affecting the bees, thus providing a basis for the sustainable and efficient control of gray mold on strawberry.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Fragaria , Animais , Aureobasidium , Abelhas , Botrytis , Fragaria/microbiologia , Frutas/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle
2.
Exp Appl Acarol ; 83(3): 313-323, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33590357

RESUMO

Phytoseiid predatory mites are the most important group of biocontrol agents currently used in protected cultivations worldwide. The possibility to produce these predators at high densities on factitious prey mites is a crucial factor for their success. Commonly used factitious prey mites comprise mainly species belonging to the cohort of Astigmatina. In the present study, we investigated the potential of tarsonemid prey mites as a food source for the spider mite predator Neoseiulus californicus (McGregor) (Acari: Phytoseiidae). The oviposition of N. californicus on mixed stages of Tarsonemus fusarii Cooreman (Acari: Tarsonemidae) was similar to that on its natural prey, the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae). As most tarsonemids are specialized fungus-feeders, we tested the effect of different fungal species on the growth of T. fusarii. Subsequently, we analysed the impact on the fungal growing medium on the oviposition of N. californicus. The fungal growing medium of T. fusarii had a significant negative effect on the reproductive output of the predatory mite. When T. fusarii was separated from the rearing medium, these detrimental effects were not observed. The present study shows the potential of using tarsonemid prey mites in the production of phytoseiid predatory mites.


Assuntos
Ácaros , Tetranychidae , Animais , Dieta , Feminino , Fungos , Controle Biológico de Vetores , Comportamento Predatório
3.
Plants (Basel) ; 9(11)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143380

RESUMO

Verticillium wilt is one of the most important diseases of cauliflower and can lead to serious economic losses. In this study, two complementary strategies were explored to employ the antagonistic capacity of Verticillium isaacii towards Verticillium wilt of cauliflower. The first strategy focused on introducing V. isaacii Vt305 by artificial inoculation of cauliflower plantlets at the nursery stage. Two inoculum types (spores and microsclerotia of V. isaacii Vt305) and different concentrations of microsclerotia were tested in greenhouse and field trials. Seed treatment with 500 microsclerotia seed-1 led to a satisfying biocontrol level of Verticillium wilt. In addition, the PHYTO-DRIP® system was successful in delivering the microsclerotia to cauliflower seeds. The second strategy relied on the stimulation of the natural V. isaacii populations by rotating cauliflower with green manures and potato. Four green manure crops and potato were tested during multiple field experiments. Although these crops seemed to stimulate the V. isaacii soil population, this increase did not result in a control effect on Verticillium wilt of cauliflower in the short term. Importantly, our results indicate that the use of green manures is compatible with the application of V. isaacii Vt305 as biocontrol agent of Verticillium wilt in cauliflower.

4.
Front Microbiol ; 8: 1186, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28729855

RESUMO

The soil-borne fungus Verticillium causes serious vascular disease in a wide variety of annual crops and woody perennials. Verticillium wilt is notoriously difficult to control by conventional methods, so there is great potential for biocontrol to manage this disease. In this study we aimed to review the research about Verticillium biocontrol to get a better understanding of characteristics that are desirable in a biocontrol agent (BCA) against Verticillium wilt. We only considered studies in which the BCAs were tested on plants. Most biocontrol studies were focused on plants of the Solanaceae, Malvaceae, and Brassicaceae and within these families eggplant, cotton, and oilseed rape were the most studied crops. The list of bacterial BCAs with potential against Verticillium was dominated by endophytic Bacillus and Pseudomonas isolates, while non-pathogenic xylem-colonizing Verticillium and Fusarium isolates topped the fungal list. Predominant modes of action involved in biocontrol were inhibition of primary inoculum germination, plant growth promotion, competition and induced resistance. Many BCAs showed in vitro antibiosis and mycoparasitism but these traits were not correlated with activity in vivo and there is no evidence that they play a role in planta. Good BCAs were obtained from soils suppressive to Verticillium wilt, disease suppressive composts, and healthy plants in infested fields. Desirable characteristics in a BCA against Verticillium are the ability to (1) affect the survival or germination of microsclerotia, (2) colonize the xylem and/or cortex and compete with the pathogen for nutrients and/or space, (3) induce resistance responses in the plant and/or (4) promote plant growth. Potential BCAs should be screened in conditions that resemble the field situation to increase the chance of successful use in practice. Furthermore, issues such as large scale production, formulation, preservation conditions, shelf life, and application methods should be considered early in the process of selecting BCAs against Verticillium.

5.
Plant Physiol ; 144(4): 1863-77, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17573540

RESUMO

Plant defense mechanisms against necrotrophic pathogens, such as Botrytis cinerea, are considered to be complex and to differ from those that are effective against biotrophs. In the abscisic acid-deficient sitiens tomato (Solanum lycopersicum) mutant, which is highly resistant to B. cinerea, accumulation of hydrogen peroxide (H(2)O(2)) was earlier and stronger than in the susceptible wild type at the site of infection. In sitiens, H(2)O(2) accumulation was observed from 4 h postinoculation (hpi), specifically in the leaf epidermal cell walls, where it caused modification by protein cross-linking and incorporation of phenolic compounds. In wild-type tomato plants, H(2)O(2) started to accumulate 24 hpi in the mesophyll layer and was associated with spreading cell death. Transcript-profiling analysis using TOM1 microarrays revealed that defense-related transcript accumulation prior to infection was higher in sitiens than in wild type. Moreover, further elevation of sitiens defense gene expression was stronger than in wild type 8 hpi both in number of genes and in their expression levels and confirmed a role for cell wall modification in the resistant reaction. Although, in general, plant defense-related reactive oxygen species formation facilitates necrotrophic colonization, these data indicate that timely hyperinduction of H(2)O(2)-dependent defenses in the epidermal cell wall can effectively block early development of B. cinerea.


Assuntos
Botrytis/fisiologia , Parede Celular/metabolismo , Peróxido de Hidrogênio/metabolismo , Epiderme Vegetal/metabolismo , Solanum lycopersicum/microbiologia , Ácido Abscísico/metabolismo , Espaço Extracelular/metabolismo , Perfilação da Expressão Gênica , Genes de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Mutação , Peroxidase/metabolismo , Fenóis/metabolismo , Doenças das Plantas , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...