Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Microbiol Resour Announc ; 13(3): e0118623, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38376411

RESUMO

We report the complete genomes of four ssDNA viruses: a circular replication-associated protein-encoding single-stranded DNA virus belonging to a clade previously detected only in mammals, and three chaphamaparvoviruses, which were detected by viromic surveillance of mute swan (Cygnus olor) fecal samples from the United Kingdom.

3.
J Gen Virol ; 104(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37589541

RESUMO

Viruses emerging from wildlife can cause outbreaks in humans and domesticated animals. Predicting the emergence of future pathogens and mitigating their impacts requires an understanding of what shapes virus diversity and dynamics in wildlife reservoirs. In order to better understand coronavirus ecology in wild species, we sampled birds within a coastal freshwater lagoon habitat across 5 years, focussing on a large population of mute swans (Cygnus olor) and the diverse species that they interact with. We discovered and characterised the full genome of a divergent gammacoronavirus belonging to the Goose coronavirus CB17 species. We investigated the genetic diversity and dynamics of this gammacoronavirus using untargeted metagenomic sequencing of 223 faecal samples from swans of known age and sex, and RT-PCR screening of 1632 additional bird samples. The virus circulated persistently within the bird community; virus prevalence in mute swans exhibited seasonal variations, but did not change with swan age-class or epidemiological year. One whole genome was fully characterised, and revealed that the virus originated from a recombination event involving an undescribed gammacoronavirus species. Multiple lineages of this gammacoronavirus co-circulated within our study population. Viruses from this species have recently been detected in aquatic birds from both the Anatidae and Rallidae families, implying that host species habitat sharing may be important in shaping virus host range. As the host range of the Goose coronavirus CB17 species is not limited to geese, we propose that this species name should be updated to 'Waterbird gammacoronavirus 1'. Non-invasive sampling of bird coronaviruses may provide a tractable model system for understanding the evolutionary and cross-species dynamics of coronaviruses.


Assuntos
Anseriformes , Infecções por Coronavirus , Coronavirus , Gammacoronavirus , Humanos , Animais , Gammacoronavirus/genética , Coronavirus/genética , Surtos de Doenças , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Animais Selvagens , Variação Genética , Recombinação Genética
4.
Mol Ecol ; 32(17): 4763-4776, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36367339

RESUMO

Viral discovery studies in wild animals often rely on cross-sectional surveys at a single time point. As a result, our understanding of the temporal stability of wild animal viromes remains poorly resolved. While studies of single host-virus systems indicate that host and environmental factors influence seasonal virus transmission dynamics, comparable insights for whole viral communities in multiple hosts are lacking. Utilizing noninvasive faecal samples from a long-term wild rodent study, we characterized viral communities of three common European rodent species (Apodemus sylvaticus, A. flavicollis and Myodes glareolus) living in temperate woodland over a single year. Our findings indicate that a substantial fraction of the rodent virome is seasonally transient and associated with vertebrate or bacteria hosts. Further analyses of one of the most common virus families, Picornaviridae, show pronounced temporal changes in viral richness and evenness, which were associated with concurrent and up to ~3-month lags in host density, ambient temperature, rainfall and humidity, suggesting complex feedbacks from the host and environmental factors on virus transmission and shedding in seasonal habitats. Overall, this study emphasizes the importance of understanding the seasonal dynamics of wild animal viromes in order to better predict and mitigate zoonotic risks.


Assuntos
Viroma , Animais , Estações do Ano , Estudos Transversais , Animais Selvagens , Arvicolinae , Murinae
5.
ISME J ; 17(2): 215-226, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36319706

RESUMO

Wildlife harbour pathogens that can harm human or livestock health and are the source of most emerging infectious diseases. It is rarely considered how changes in wildlife population age-structures or how age-stratified behaviours might alter the level of pathogen detection within a species, or risk of spillover to other species. Micro-organisms that occur in healthy animals can be an important model for understanding and predicting the dynamics of pathogens of greater health concern, which are hard to study in wild populations due to their relative rarity. We therefore used a metagenomic approach to jointly characterise viral and prokaryotic carriage in faeces collected from a healthy wild bird population (Cygnus olor; mute swan) that has been subject to long-term study. Using 223 samples from known individuals allowed us to compare differences in prokaryotic and eukaryotic viral carriage between adults and juveniles at an unprecedented level of detail. We discovered and characterised 77 novel virus species, of which 21% belong putatively to bird-infecting families, and described the core prokaryotic microbiome of C. olor. Whilst no difference in microbiota diversity was observed between juveniles and adult individuals, 50% (4/8) of bird-infecting virus families (picornaviruses, astroviruses, adenoviruses and bornaviruses) and 3.4% (9/267) of prokaryotic families (including Helicobacteraceae, Spirochaetaceae and Flavobacteriaceae families) were differentially abundant and/or prevalent between juveniles and adults. This indicates that perturbations that affect population age-structures of wildlife could alter circulation dynamics and spillover risk of microbes, potentially including pathogens.


Assuntos
Animais Selvagens , Anseriformes , Humanos , Animais , Aves , Metagenoma
6.
Pathogens ; 11(10)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36297210

RESUMO

Herpesviruses are ubiquitous pathogens infecting most animals. Although host immunity continually coevolves to combat virulence, viral variants with enhanced transmissibility or virulence occasionally emerge, resulting in disease burdens in host populations. Mustelid gammaherpesvirus 1 (MusGHV-1) is the only herpesvirus species identified thus far in European badgers, Meles meles. No MusGHV-1 associated pathomorbidity has been reported, but reactivation of MusGHV-1 in genital tracts is linked to impaired female reproductive success. An analysis of a short sequence from the highly conserved DNA polymerase (DNApol) gene previously identified two variants in a single host population. Here we compared genetic variance in blood samples from 66 known individuals of this same free-ranging badger population using a partial sequence comprising 2874 nucleotides of the DNApol gene, among which we identified 15 nucleotide differences resulting in 5 amino acid differences. Prevalence was 86% (59/66) for the common and 17% (11/66) for the novel variant, with 6% (4/66) of badgers presenting with coinfection. MusGHV-1 variants were distributed unevenly across the population, with individuals infected with the novel genotype clustered in 3 of 25 contiguous social groups. Individuals infected with the novel variant had significantly higher MusGHV-1 viral loads in their blood (p = 0.002) after adjusting for age (juveniles > adults, p < 0.001) and season (summer > spring and autumn, p = 0.005; mixed-effect linear regression), likely indicating higher virulence of the novel variant. Further genome-wide analyses of MusGHV-1 host resistance genes and host phenotypic variations are required to clarify the drivers and sequelae of this new MusGHV-1 variant.

7.
Phytopathology ; 112(11): 2253-2272, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35722889

RESUMO

Over the last decade, viral metagenomic studies have resulted in the discovery of thousands of previously unknown viruses. These studies are likely to play a pivotal role in obtaining an accurate and robust understanding of how viruses affect the stability and productivity of ecosystems. Among the metagenomics-based approaches that have been developed since the beginning of the 21st century, shotgun metagenomics applied specifically to virion-associated nucleic acids (VANA) has been used to disentangle the diversity of the viral world. We summarize herein the results of 24 VANA-based studies, focusing on plant and insect samples conducted over the last decade (2010 to 2020). Collectively, viruses from 85 different families were reliably detected in these studies, including capsidless RNA viruses that replicate in fungi, oomycetes, and plants. Finally, strengths and weaknesses of the VANA approach are summarized and perspectives of applications in detection, epidemiological surveillance, environmental monitoring, and ecology of plant viruses are provided. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Ácidos Nucleicos , Vírus de Plantas , Metagenômica/métodos , Ecossistema , Doenças das Plantas , Vírus de Plantas/genética , Vírion/genética , Plantas
8.
Biomolecules ; 11(5)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064759

RESUMO

Gammaherpesvirus reactivation can promote diseases or impair reproduction. Understanding reactivation patterns and associated risks of different stressors is therefore important. Nevertheless, outside the laboratory or captive environment, studies on the effects of stress on gammaherpesvirus reactivation in wild mammals are lacking. Here we used Mustelid gammaherpesvirus 1 (MusGHV-1) infection in European badgers (Meles meles) as a host-pathogen wildlife model to study the effects of a variety of demographic, physiological and environmental stressors on virus shedding in the genital tract. We collected 251 genital swabs from 150 free-ranging individuals across three seasons and screened them for the presence of MusGHV-1 DNA using PCR targeting the DNA polymerase gene. We explored possible links between MusGHV-1 DNA presence and seven variables reflecting stressors, using logistic regression analysis. The results reveal different sets of risk factors between juveniles and adults, likely reflecting primary infection and reactivation. In adults, virus shedding was more likely in badgers in poorer body condition and younger than 5 years or older than 7; while in juveniles, virus shedding is more likely in females and individuals in better body condition. However, living in social groups with more cubs was a risk factor for all badgers. We discuss possible explanations for these risk factors and their links to stress in badgers.


Assuntos
Gammaherpesvirinae/isolamento & purificação , Infecções por Herpesviridae/veterinária , Mustelidae/virologia , Animais , Feminino , Genitália/virologia , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/virologia , Masculino , Reprodução/fisiologia , Fatores de Risco , Estações do Ano , Estresse Fisiológico/fisiologia , Ativação Viral
9.
Viruses ; 13(5)2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925168

RESUMO

Advances in viral metagenomics have paved the way of virus discovery by making the exploration of viruses in any ecosystem possible. Applied to agroecosystems, such an approach opens new possibilities to explore how viruses circulate between insects and plants, which may help to optimise their management. It could also lead to identifying novel entomopathogenic viral resources potentially suitable for biocontrol strategies. We sampled the larvae of a natural population of alfalfa weevils (Hypera postica), a major herbivorous pest feeding on legumes, and its host plant alfalfa (Medicago sativa). Insect and plant samples were collected from a crop field and an adjacent meadow. We characterised the diversity and abundance of viruses associated with weevils and alfalfa, and described nine putative new virus species, including four associated with alfalfa and five with weevils. In addition, we found that trophic accumulation may result in a higher diversity of plant viruses in phytophagous pests compared to host plants.


Assuntos
Medicago sativa/parasitologia , Medicago sativa/virologia , Viroma , Gorgulhos/virologia , Agricultura , Animais , Biodiversidade , Ecossistema , Metagenoma , Metagenômica/métodos , Filogenia , Doenças das Plantas/virologia
11.
J Gen Virol ; 101(8): 785-790, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32519942

RESUMO

The last two decades have seen the rise of viromics, the study of viral communities through the detection and characterization of virus genome sequences. Here we systematically review and summarize the scope and limitations of our current understanding of avian viromes, in both domesticated and wild-bird populations. We compare this viromic work to the broader literature on avian prokaryotic microbiomes, and highlight the growing importance of structured sampling and experimental design for testing explanatory hypotheses. We provide a number of recommendations for sample collection and preliminary data analysis to guide the development of avian viromics. Avian viromes have the potential to inform disease surveillance in poultry and improve our understanding of the risk of zoonotic viruses to human health.


Assuntos
Aves/virologia , Viroma/genética , Animais , Animais Selvagens/virologia , Genoma Viral/genética , Humanos , Doenças das Aves Domésticas/virologia , Viroses/virologia
12.
Cell ; 181(5): 997-1003.e9, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32359424

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2 infection and was first reported in central China in December 2019. Extensive molecular surveillance in Guangdong, China's most populous province, during early 2020 resulted in 1,388 reported RNA-positive cases from 1.6 million tests. In order to understand the molecular epidemiology and genetic diversity of SARS-CoV-2 in China, we generated 53 genomes from infected individuals in Guangdong using a combination of metagenomic sequencing and tiling amplicon approaches. Combined epidemiological and phylogenetic analyses indicate multiple independent introductions to Guangdong, although phylogenetic clustering is uncertain because of low virus genetic variation early in the pandemic. Our results illustrate how the timing, size, and duration of putative local transmission chains were constrained by national travel restrictions and by the province's large-scale intensive surveillance and intervention measures. Despite these successes, COVID-19 surveillance in Guangdong is still required, because the number of cases imported from other countries has increased.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/epidemiologia , Pneumonia Viral/epidemiologia , Teorema de Bayes , COVID-19 , China/epidemiologia , Infecções por Coronavirus/virologia , Monitoramento Epidemiológico , Humanos , Funções Verossimilhança , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2 , Viagem
13.
Virus Evol ; 5(2): vez053, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31807318

RESUMO

Viruses of the Parvoviridae family infect a wide range of animals including vertebrates and invertebrates. So far, our understanding of parvovirus diversity is biased towards medically or economically important viruses mainly infecting vertebrate hosts, while invertebrate infecting parvoviruses-namely densoviruses-have been largely neglected. Here, we investigated the prevalence and the evolution of the only mosquito-infecting ambidensovirus, Culex pipiens densovirus (CpDV), from laboratory mosquito lines and natural populations collected worldwide. CpDV diversity generally grouped in two clades, here named CpDV-1 and -2. The incongruence of the different gene trees for some samples suggested the possibility of recombination events between strains from different clades. We further investigated the role of selection on the evolution of CpDV genome and detected many individual sites under purifying selection both in non-structural and structural genes. However, some sites in structural genes were under diversifying selection, especially during the divergence of CpDV-1 and -2 clades. These substitutions between CpDV-1 and -2 clades were mostly located in the capsid protein encoding region and might cause changes in host specificity or pathogenicity of CpDV strains from the two clades. However, additional functional and experimental studies are necessary to fully understand the protein conformations and the resulting phenotype of these substitutions between clades of CpDV.

14.
Emerg Microbes Infect ; 8(1): 823-826, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31164049

RESUMO

The spread of highly pathogenic avian influenza (HPAI) H5N1 virus is associated with wild fowl migration in East Asian-Australasian (EA) and Central Asian (CA) flyways. However, the spread of H5N1 virus between the two flyways is still unclear. Here, the movements of wild waterfowl were obtained from satellite tracking data covering seven bar-headed geese and three great black-headed gulls breeding in the Qinghai Lake area (along the EA flyway), and 20 whooper swans wintering in the Sanmenxia Reservoir area (at the CA flyway). From the 2688 samples that were screened from wild birds at Qinghai Lake after an outbreak of H5N1 in July 2015, four genomes of H5N1 virus were obtained from bar-headed geese. The results of phylogenetic analysis indicated that these H5N1 viruses belonged to clade 2.3.2.1c and their gene fragments were highly homologous with A/whooper swan/Henan/SMX1/2015 (H5N1) virus (ranging from 99.76% to 100.00%) isolated from a dead whooper swan from the Sanmenxia Reservoir area along the EA flyway in January 2015. Furthermore, the coincidental timing of the H5N1 outbreak with spring migration, together with phylogenetic evidence, provided new evidence of the east-to-west spread of HPAI H5N1 between the EA and CA migratory flyways of China.


Assuntos
Anseriformes/fisiologia , Virus da Influenza A Subtipo H5N1/fisiologia , Influenza Aviária/epidemiologia , Migração Animal , Animais , Animais Selvagens/fisiologia , Animais Selvagens/virologia , Anseriformes/virologia , Ásia/epidemiologia , Austrália/epidemiologia , China/epidemiologia , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Influenza Aviária/transmissão , Influenza Aviária/virologia , Filogenia , Estações do Ano
15.
Viruses ; 11(3)2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30866521

RESUMO

Viral metagenomics and high throughput sequence mining have revealed unexpected diversity, and the potential presence, of parvoviruses in animals from all phyla. Among arthropods, this diversity highlights the poor knowledge that we have regarding the evolutionary history of densoviruses. The aim of this study was to explore densovirus diversity in a small arthropod pest belonging to Acari, the two-spotted spider mite Tetranychus urticae, while using viral metagenomics based on virus-enrichment. Here, we present the viromes obtained from T. urticae laboratory populations made of contigs that are attributed to nine new potential viral species, including the complete sequence of a novel densovirus. The genome of this densovirus has an ambisens genomic organization and an unusually compact size with particularly small non-structural proteins and a predicted major capsid protein that lacks the typical PLA2 motif that is common to all ambidensoviruses described so far. In addition, we showed that this new densovirus had a wide prevalence across populations of mite species tested and a genomic diversity that likely correlates with the host phylogeny. In particular, we observed a low densovirus genomic diversity between the laboratory and natural populations, which suggests that virus within-species evolution is probably slower than initially thought. Lastly, we showed that this novel densovirus can be inoculated to the host plant following feeding by infected mites, and circulate through the plant vascular system. These findings offer new insights into densovirus prevalence, evolution, and ecology.


Assuntos
Densovirus/genética , Densovirus/isolamento & purificação , Variação Genética , Microbiota , Tetranychidae/virologia , Animais , Proteínas do Capsídeo/genética , Feminino , Genoma Viral , Metagenômica , Filogenia , Plantas/virologia , Prevalência , Proteínas não Estruturais Virais/genética
16.
PLoS One ; 13(9): e0203477, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30180217

RESUMO

Viral infections of alfalfa are widespread in major cultivation areas and their impact on alfalfa production may be underestimated. A new viral species, provisionally named alfalfa virus F (AVF), was identified using a virion-associated nucleic acid (VANA) metagenomics-based approach in alfalfa (Medicago sativa L.) samples collected in Southern France. The nucleotide sequence of the viral genome was determined by de-novo assembly of VANA reads and by 5'/3' RACE with viral RNA extracted from enriched viral particles or with total RNA, respectively. The virus shares the greatest degree of overall sequence identity (~78%) with Medicago sativa marafivirus 1 (MsMV1) recently deduced from alfalfa transcriptomic data. The tentative nucleotide sequence of the AVF coat protein shares ~83% identity with the corresponding region of MsMV1. A sequence search of the predicted single large ORF encoding a polyprotein of 235kDa in the Pfam database resulted in identification of five domains, characteristic of the genus Marafivirus, family Tymoviridae. The AVF genome also contains a conserved "marafibox", a 16-nt consensus sequence present in all known marafiviruses. Phylogenetic analysis of the complete nucleotide sequences of AVF and other viruses of the family Tymoviridae grouped AVF in the same cluster with MsMV1. In addition to 5' and 3' terminal extensions, the identity of the virus was confirmed by RT-PCRs with primers derived from VANA-contigs, transmission electron microscopy with virus-infected tissues and transient expression of the viral coat protein gene using a heterologous virus-based vector. Based on the criteria demarcating species in the genus Marafivirus that include overall sequence identity less than 80% and coat protein identity less than 90%, we propose that AVF represents a distinct viral species in the genus Marafivirus, family Tymoviridae.


Assuntos
Vírus do Mosaico da Alfafa , Genoma Viral , Medicago sativa/virologia , Fases de Leitura Aberta , RNA Viral/genética , Tymoviridae , Proteínas Virais/genética , Vírus do Mosaico da Alfafa/classificação , Vírus do Mosaico da Alfafa/genética , Vírus do Mosaico da Alfafa/ultraestrutura , Tymoviridae/classificação , Tymoviridae/genética , Tymoviridae/ultraestrutura
17.
Brain Cogn ; 126: 1-12, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30029026

RESUMO

It is well-known that the ageing process disrupts episodic memory. The aim of this study was to use an fMRI visual recognition task to characterize age-related changes in cerebral regions activated, during encoding, for images that would subsequently lead to a recollection-based or to a familiarity-based recognition. Results show that, for subsequent recollection, young adults activated regions related to semantic processing more extensively than older ones. On the other hand, despite putatively producing less semantic elaboration, older adults activated contralateral regions supplementary to those found in young adults (which might represent attempted compensation), as well as regions of the default-mode network. These results suggest older adults could achieve subsequent recollection through different processes, for instance an appraisal of the self-relevance of the stimuli. For subsequent familiarity, the comparisons only revealed greater activations in young adults, in the dorsal frontoparietal attention system as well as in the hippocampus, again suggesting that, even if older adults are able to produce recollection- and familiarity-based recognition, the semantic processing might still be weaker in old adults, who might nonetheless use qualitatively different strategies in order to produce such responses. Further studies are necessary in order to characterize those strategies.


Assuntos
Envelhecimento/fisiologia , Hipocampo/diagnóstico por imagem , Rememoração Mental/fisiologia , Reconhecimento Psicológico/fisiologia , Lobo Temporal/diagnóstico por imagem , Adulto , Idoso , Atenção/fisiologia , Feminino , Hipocampo/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Lobo Temporal/fisiologia , Adulto Jovem
18.
Methods Mol Biol ; 1746: 77-95, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29492888

RESUMO

Viral metagenomic approaches have become essential for culture-independent and sequence-independent viral detection and characterization. This chapter describes an accurate and efficient approach to (1) concentrate viral particles from arthropods and plants, (2) remove contaminating non-encapsidated nucleic acids, (3) extract and amplify both viral DNA and RNA, and (4) analyze high-throughput sequencing (HTS) data by bioinformatics. Using this approach, up to 96 arthropod or plant samples can be multiplexed in a single HTS library.


Assuntos
Artrópodes/virologia , DNA Viral/análise , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenômica , Plantas/virologia , Vírus/genética , Animais , Biologia Computacional , DNA Viral/genética , DNA Viral/isolamento & purificação , Vírus/isolamento & purificação
19.
Behav Brain Res ; 320: 504-516, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27784627

RESUMO

INTRODUCTION: Research on cognitive control suggests an age-related decline in proactive control abilities (anticipatory control), whereas reactive control (following conflict detection) seems to remain intact. As proactive and reactive control abilities are associated with specific brain networks, this study investigated age-related effects on the neural substrates associated with each kind of control. METHODS: In an event-related fMRI study, a modified version of the Stroop task was administered to groups of 20 young and 20 older healthy adults. Based on the theory of dual mechanisms of control, the Stroop task has been built to induce proactive or reactive control depending on task context. RESULTS: Behavioral results (p<0.05) indicated faster processing of interfering items in the mostly incongruent (MI) than the mostly congruent (MC) context in both young and older participants. fMRI results showed that reactive control is associated with increased activity in left frontal areas for older participants. For proactive control, decreased activity in the bilateral anterior cingulate cortex was associated with more activity in the right middle frontal gyrus in the older than the younger group. CONCLUSION: These observations support the hypothesis that aging affects the neural networks associated with reactive and proactive cognitive control differentially. These age-related changes are very similar to those observed in young adults with low dopamine availability, suggesting that a general mechanism (prefrontal dopamine availability) may modulate brain networks associated with various kinds of cognitive control.


Assuntos
Envelhecimento/fisiologia , Atenção/fisiologia , Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Cognição/fisiologia , Adulto , Idoso , Encéfalo/fisiologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Oxigênio/sangue , Leitura , Teste de Stroop , Adulto Jovem
20.
Virology ; 493: 142-53, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27038709

RESUMO

Little is known about the prevalence, diversity, evolutionary processes, genomic structures and population dynamics of viruses in the divergent geminivirus lineage known as the capulaviruses. We determined and analyzed full genome sequences of 13 Euphorbia caput-medusae latent virus (EcmLV) and 26 Alfalfa leaf curl virus (ALCV) isolates, and partial genome sequences of 23 EcmLV and 37 ALCV isolates. While EcmLV was asymptomatic in uncultivated southern African Euphorbia caput-medusae, severe alfalfa disease symptoms were associated with ALCV in southern France. The prevalence of both viruses exceeded 10% in their respective hosts. Besides using patterns of detectable negative selection to identify ORFs that are probably functionally expressed, we show that ALCV and EcmLV both display evidence of inter-species recombination and biologically functional genomic secondary structures. Finally, we show that whereas the EcmLV populations likely experience restricted geographical dispersion, ALCV is probably freely moving across the French Mediterranean region.


Assuntos
Euphorbia/virologia , Geminiviridae/isolamento & purificação , Medicago sativa/virologia , DNA Viral , Ecossistema , França , Geminiviridae/classificação , Geminiviridae/genética , Geminiviridae/fisiologia , Genoma Viral , Conformação de Ácido Nucleico , Fases de Leitura Aberta , Filogenia , Doenças das Plantas/virologia , Recombinação Genética , Análise de Sequência de DNA , África do Sul , Latência Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...