Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Mol Cell Proteomics ; 23(1): 100696, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101751

RESUMO

Plasminogen (Plg), the zymogen of plasmin (Plm), is a glycoprotein involved in fibrinolysis and a wide variety of other physiological processes. Plg dysregulation has been implicated in a range of diseases. Classically, human Plg is categorized into two types, supposedly having different functional features, based on the presence (type I) or absence (type II) of a single N-linked glycan. Using high-resolution native mass spectrometry, we uncovered that the proteoform profiles of human Plg (and Plm) are substantially more extensive than this simple binary classification. In samples derived from human plasma, we identified up to 14 distinct proteoforms of Plg, including a novel highly stoichiometric phosphorylation site at Ser339. To elucidate the potential functional effects of these post-translational modifications, we performed proteoform-resolved kinetic analyses of the Plg-to-Plm conversion using several canonical activators. This conversion is thought to involve at least two independent cleavage events: one to remove the N-terminal peptide and another to release the active catalytic site. Our analyses reveal that these processes are not independent but are instead tightly regulated and occur in a step-wise manner. Notably, N-terminal cleavage at the canonical site (Lys77) does not occur directly from intact Plg. Instead, an activation intermediate corresponding to cleavage at Arg68 is initially produced, which only then is further processed to the canonical Lys77 product. Based on our results, we propose a refined categorization for human Plg proteoforms. In addition, we reveal that the proteoform profile of human Plg is more extensive than that of rat Plg, which lacks, for instance, the here-described phosphorylation at Ser339.


Assuntos
Fibrinolisina , Plasminogênio , Humanos , Ratos , Animais , Fosforilação , Plasminogênio/metabolismo , Fibrinolisina/metabolismo , Fibrinólise , Processamento de Proteína Pós-Traducional
2.
Proc Natl Acad Sci U S A ; 120(50): e2311265120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38055740

RESUMO

Immunoglobulin M (IgM) is an evolutionary conserved key component of humoral immunity, and the first antibody isotype to emerge during an immune response. IgM is a large (1 MDa), multimeric protein, for which both hexameric and pentameric structures have been described, the latter additionally containing a joining (J) chain. Using a combination of single-particle mass spectrometry and mass photometry, proteomics, and immunochemical assays, we here demonstrate that circulatory (serum) IgM exclusively exists as a complex of J-chain-containing pentamers covalently bound to the small (36 kDa) protein CD5 antigen-like (CD5L, also called apoptosis inhibitor of macrophage). In sharp contrast, secretory IgM in saliva and milk is principally devoid of CD5L. Unlike IgM itself, CD5L is not produced by B cells, implying that it associates with IgM in the extracellular space. We demonstrate that CD5L integration has functional implications, i.e., it diminishes IgM binding to two of its receptors, the FcαµR and the polymeric Immunoglobulin receptor. On the other hand, binding to FcµR as well as complement activation via C1q seem unaffected by CD5L integration. Taken together, we redefine the composition of circulatory IgM as a J-chain containing pentamer, always in complex with CD5L.


Assuntos
Linfócitos B , Cadeias J de Imunoglobulina , Imunoglobulina M/metabolismo , Cadeias J de Imunoglobulina/metabolismo , Linfócitos B/metabolismo , Antígenos , Macrófagos/metabolismo
3.
MAbs ; 15(1): 2175312, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36799476

RESUMO

The development of increasingly complex antibody formats, such as bispecifics, can lead to the formation of increasingly complex high- and low-molecular-weight by-products. Here, we focus on the characterization of high molecular weight species (HMWs) representing the highest complexity of size variants. Standard methods used for product release, such as size exclusion chromatography (SEC), can separate HMW by-products from the main product, but cannot distinguish smaller changes in mass. Here, for the identification of the diverse and complex HMW variants of a trivalent bispecific CrossMAb antibody, offline fractionation, as well as production of HMW by-products combined with comprehensive analytical testing, was applied. Furthermore, HMW variants were analyzed regarding their chemical binding nature and tested in functional assays regarding changes in potency of the variants. Changes in potency were explained by detailed characterization using mass photometry, SDS-PAGE analysis, native mass spectrometry (MS) coupled to SEC and bottom-up proteomics. We identified a major portion of the HMW by-products to be non-covalently linked, leading to dissociation and changes in activity. We also identified and localized high heterogeneity of a by-product of concern and applied a CD3 affinity column coupled to native MS to annotate unexpected by-products. We present here a multi-method approach for the characterization of complex HMW by-products. A better understanding of these by-products is beneficial to guide analytical method development and proper specification setting for therapeutic bispecific antibodies to ensure constant efficacy and patient safety of the product through the assessment of by-products.


Assuntos
Anticorpos Biespecíficos , Humanos , Anticorpos Biespecíficos/química , Peso Molecular , Espectrometria de Massas/métodos , Cromatografia em Gel
4.
Anal Chem ; 94(37): 12732-12741, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36074704

RESUMO

Most proteins in serum are glycosylated, with several annotated as biomarkers and thus diagnostically important and of interest for their role in disease. Most methods for analyzing serum glycoproteins employ either glycan release or glycopeptide centric mass spectrometry-based approaches, which provide excellent tools for analyzing known glycans but neglect previously undefined or unknown glycosylation and/or other co-occurring modifications. High-resolution native mass spectrometry is a relatively new technique for the analysis of intact glycoproteins, providing a "what you see is what you get" mass profile of a protein, allowing the qualitative and quantitative observation of all modifications present. So far, a disadvantage of this approach has been that it centers mostly on just one specific serum glycoprotein at the time. To address this issue, we introduce an ion-exchange chromatography-based fractionation method capable of isolating and analyzing, in parallel, over 20 serum (glyco)proteins, covering a mass range between 30 and 190 kDa, from 150 µL of serum. Although generating data in parallel for all these 20 proteins, we focus the discussion on the very complex proteoform profiles of four selected proteins, i.e., α-1-antitrypsin, ceruloplasmin, hemopexin, and complement protein C3. Our analyses provide an insight into the extensive proteoform landscape of serum proteins in individual donors, caused by the occurrence of various N- and O-glycans, protein cysteinylation, and co-occurring genetic variants. Moreover, native mass intact mass profiling also provided an edge over alternative approaches revealing the presence of apo- and holo-forms of ceruloplasmin and the endogenous proteolytic processing in plasma of among others complement protein C3. We also applied our approach to a small cohort of serum samples from healthy and diseased individuals. In these, we qualitatively and quantitatively monitored the changes in proteoform profiles of ceruloplasmin and revealed a substantial increase in fucosylation and glycan occupancy in patients with late-stage hepatocellular carcinoma and pancreatic cancer as compared to healthy donor samples.


Assuntos
Proteínas Sanguíneas , Doadores de Sangue , Proteínas Sanguíneas/análise , Ceruloplasmina , Proteínas do Sistema Complemento , Glicopeptídeos/análise , Glicoproteínas/análise , Hemopexina , Humanos , Espectrometria de Massas , Polissacarídeos/análise
5.
Elife ; 112022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35947526

RESUMO

The membrane attack complex (MAC or C5b-9) is an important effector of the immune system to kill invading microbes. MAC formation is initiated when complement enzymes on the bacterial surface convert complement component C5 into C5b. Although the MAC is a membrane-inserted complex, soluble forms of MAC (sMAC), or terminal complement complex (TCC), are often detected in sera of patients suffering from infections. Consequently, sMAC has been proposed as a biomarker, but it remains unclear when and how it is formed during infections. Here, we studied mechanisms of MAC formation on different Gram-negative and Gram-positive bacteria and found that sMAC is primarily formed in human serum by bacteria resistant to MAC-dependent killing. Surprisingly, C5 was converted into C5b more potently by MAC-resistant compared to MAC-sensitive Escherichia coli strains. In addition, we found that MAC precursors are released from the surface of MAC-resistant bacteria during MAC assembly. Although release of MAC precursors from bacteria induced lysis of bystander human erythrocytes, serum regulators vitronectin (Vn) and clusterin (Clu) can prevent this. Combining size exclusion chromatography with mass spectrometry profiling, we show that sMAC released from bacteria in serum is a heterogeneous mixture of complexes composed of C5b-8, up to three copies of C9 and multiple copies of Vn and Clu. Altogether, our data provide molecular insight into how sMAC is generated during bacterial infections. This fundamental knowledge could form the basis for exploring the use of sMAC as biomarker.


Assuntos
Complemento C5 , Infecções por Escherichia coli , Ativação do Complemento , Complexo de Ataque à Membrana do Sistema Complemento , Escherichia coli , Bactérias Gram-Positivas , Humanos , Vitronectina
6.
Nat Commun ; 12(1): 6086, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34667172

RESUMO

Unregulated complement activation causes inflammatory and immunological pathologies with consequences for human disease. To prevent bystander damage during an immune response, extracellular chaperones (clusterin and vitronectin) capture and clear soluble precursors to the membrane attack complex (sMAC). However, how these chaperones block further polymerization of MAC and prevent the complex from binding target membranes remains unclear. Here, we address that question by combining cryo electron microscopy (cryoEM) and cross-linking mass spectrometry (XL-MS) to solve the structure of sMAC. Together our data reveal how clusterin recognizes and inhibits polymerizing complement proteins by binding a negatively charged surface of sMAC. Furthermore, we show that the pore-forming C9 protein is trapped in an intermediate conformation whereby only one of its two transmembrane ß-hairpins has unfurled. This structure provides molecular details for immune pore formation and helps explain a complement control mechanism that has potential implications for how cell clearance pathways mediate immune homeostasis.


Assuntos
Complexo de Ataque à Membrana do Sistema Complemento/química , Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Complemento C8/química , Complemento C8/metabolismo , Complemento C9/química , Complemento C9/imunologia , Microscopia Crioeletrônica , Humanos , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios Proteicos
7.
J Proteome Res ; 20(10): 4875-4885, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34515489

RESUMO

The prolyl-alanyl-specific endoprotease (EndoPro) is an industrial enzyme produced in Aspergillus niger. EndoPro is mainly used for food applications but also as a protease in proteomics. In-depth characterization of this enzyme is essential to understand its structural features and functionality. However, there is a lack of analytical methods capable of maintaining both the structural and functional integrity of separated proteoforms. In this study, we developed an anion exchange (AEX) method coupled to native mass spectrometry (MS) for profiling EndoPro proteoforms. Moreover, we investigated purified EndoPro proteoforms with complementary MS-based approaches, including released N-glycan and glycopeptide analysis, to obtain a comprehensive overview of the structural heterogeneity. We showed that EndoPro has at least three sequence variants and seven N-glycosylation sites occupied by high-mannose glycans that can be phosphorylated. Each glycosylation site showed high microheterogeneity with ∼20 glycans per site. The functional characterization of fractionated proteoforms revealed that EndoPro proteoforms remained active after AEX-separation and the specificity of these proteoforms did not depend on N-glycan phosphorylation. Nevertheless, our data confirmed a strong pH dependence of EndoPro cleavage activity. Altogether, our study demonstrates that AEX-MS is an excellent tool to characterize complex industrial enzymes under native conditions.


Assuntos
Aspergillus niger , Proteômica , Glicosilação , Espectrometria de Massas , Proteínas
8.
Proteomics ; 21(21-22): e2000310, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34241972

RESUMO

The human complement system provides a first line of defence against pathogens. It requires a well-orchestrated sequential assembly of an array of terminal complement components (C5, C6, C7, C8, and C9), ultimately forming the membrane attack complex (MAC). Although much information about MAC assembly is available, the structure of the soluble C7 has remained elusive. The complement proteins C7 and C6 share very high sequence homology and exhibit several conserved domains, disulphide bridges, and C-mannosylation sites. Here, we used an integrative structural MS-based approach combining native MS, glycopeptide-centric MS, in-gel cross-linking MS (IGX-MS) and structural modelling to describe structural features, including glycosylation, of human serum soluble C7. We compare this data with structural and glycosylation data for human serum C6. The new structural model for C7 shows that it adopts a compact conformation in solution. Although C6 and C7 share many similarities, our data reveals distinct O-, and N-linked glycosylation patterns in terms of location and glycan composition. Cumulatively, our data provide valuable new insight into the structure and proteoforms of C7, solving an essential piece of the puzzle in our understanding of MAC assembly.


Assuntos
Complexo de Ataque à Membrana do Sistema Complemento , Proteínas do Sistema Complemento , Complemento C6 , Complemento C7 , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Glicosilação , Humanos , Espectrometria de Massas em Tandem
9.
EMBO J ; 40(4): e106174, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33459420

RESUMO

Cross-linking mass spectrometry has developed into an important method to study protein structures and interactions. The in-solution cross-linking workflows involve time and sample consuming steps and do not provide sensible solutions for differentiating cross-links obtained from co-occurring protein oligomers, complexes, or conformers. Here we developed a cross-linking workflow combining blue native PAGE with in-gel cross-linking mass spectrometry (IGX-MS). This workflow circumvents steps, such as buffer exchange and cross-linker concentration optimization. Additionally, IGX-MS enables the parallel analysis of co-occurring protein complexes using only small amounts of sample. Another benefit of IGX-MS, demonstrated by experiments on GroEL and purified bovine heart mitochondria, is the substantial reduction of undesired over-length cross-links compared to in-solution cross-linking. We next used IGX-MS to investigate the complement components C5, C6, and their hetero-dimeric C5b6 complex. The obtained cross-links were used to generate a refined structural model of the complement component C6, resembling C6 in its inactivated state. This finding shows that IGX-MS can provide new insights into the initial stages of the terminal complement pathway.


Assuntos
Complemento C5/metabolismo , Complemento C6/metabolismo , Proteínas do Sistema Complemento/metabolismo , Reagentes de Ligações Cruzadas/química , Espectrometria de Massas/métodos , Mitocôndrias Cardíacas/metabolismo , Animais , Bovinos , Complemento C5/química , Complemento C6/química , Proteínas do Sistema Complemento/química
10.
MAbs ; 12(1): 1792084, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32643525

RESUMO

Gene therapy approaches now allow for the production of therapeutic antibodies by healthy or cancerous human tissues directly in vivo, and, with an increasing number of gene delivery methods available, the cell type for expression can be chosen. Yet, little is known about the biophysical changes introduced by expressing antibodies from producer cells or tissues targeted by gene therapy approaches, nor about the consequences for the type of glycosylation. The effects of different glycosylation on therapeutic antibodies have been well studied by controlling their glycan compositions in non-human mammalian production cells, i.e., Chinese hamster ovary cells. Therefore, we investigated the glycosylation state of clinically approved antibodies secreted from cancer tissues frequently targeted by in vivo gene therapy, using native mass spectrometry and glycoproteomics. We found that antibody sialylation and fucosylation depended on the producer tissue and the antibody isotype, allowing us to identify optimal producer cell types according to the desired mode of action of the antibody. Furthermore, we discovered that high amounts (>20%) of non-glycosylated antibodies were produced in cells sensitive to the action of the produced antibodies. Different glycosylation in different producer cells can translate into an altered potency of in-vivo produced antibodies, depending on the desired mode of action, and can affect their serum half-lives. These results increase our knowledge about antibodies produced from cells targeted by gene therapy, enabling development of improved cancer gene therapy vectors that can include in vivo glycoengineering of expressed antibodies to optimize their efficacies, depending on the desired mode of action.


Assuntos
Genes Neoplásicos , Terapia Genética , Vetores Genéticos , Neoplasias , Animais , Células CHO , Cricetulus , Vetores Genéticos/química , Vetores Genéticos/farmacologia , Glicosilação , Humanos , Neoplasias/genética , Neoplasias/terapia , Trastuzumab/química , Trastuzumab/farmacologia
11.
Proc Natl Acad Sci U S A ; 117(27): 15554-15564, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32561649

RESUMO

The serum haptoglobin protein (Hp) scavenges toxic hemoglobin (Hb) leaked into the bloodstream from erythrocytes. In humans, there are two frequently occurring allelic forms of Hp, resulting in three genotypes: Homozygous Hp 1-1 and Hp 2-2, and heterozygous Hp 2-1. The Hp genetic polymorphism has an intriguing effect on the quaternary structure of Hp. The simplest form, Hp 1-1, forms dimers consisting of two α1ß units, connected by disulfide bridges. Hp 2-1 forms mixtures of linear (α1)2(α2)n-2(ß)n oligomers (n > 1) while Hp 2-2 occurs in cyclic (α2)n(ß)n oligomers (n > 2). Different Hp genotypes bind Hb with different affinities, with Hp 2-2 being the weakest binder. This behavior has a significant influence on Hp's antioxidant capacity, with potentially distinctive personalized clinical consequences. Although Hp has been studied extensively in the past, the finest molecular details of the observed differences in interactions between Hp and Hb are not yet fully understood. Here, we determined the full proteoform profiles and proteoform assemblies of all three most common genetic Hp variants. We combined several state-of-the-art analytical methods, including various forms of chromatography, mass photometry, and different tiers of mass spectrometry, to reveal how the tens to hundreds distinct proteoforms and their assemblies influence Hp's capacity for Hb binding. We extend the current knowledge by showing that Hb binding does not just depend on the donor's genotype, but is also affected by variations in Hp oligomerization, glycosylation, and proteolytic processing of the Hp α-chain.


Assuntos
Haptoglobinas/genética , Hemoglobinas/metabolismo , Alelos , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/metabolismo , Glicosilação , Haptoglobinas/química , Haptoglobinas/isolamento & purificação , Haptoglobinas/metabolismo , Hemoglobinas/toxicidade , Humanos , Espectrometria de Massas , Modelos Moleculares , Estrutura Molecular , Polimorfismo Genético , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/isolamento & purificação , Isoformas de Proteínas/metabolismo , Relação Estrutura-Atividade
12.
Front Immunol ; 11: 608466, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519818

RESUMO

Sepsis and septic shock remain the leading causes of death in intensive care units (ICUs), yet the pathogenesis originating from the inflammatory response during sepsis remains ambiguous. Acute-phase proteins are typically highly glycosylated, and the nature of the glycans have been linked to the incidence and severity of such inflammatory responses. To further build upon these findings we here monitored, the longitudinal changes in the plasma proteome and, in molecular detail, glycoproteoform profiles of alpha-1-antichymotrypsin (AACT) extracted from plasma of ten individual septic patients. For each patient we included four different time-points, including post-operative (before sepsis) and following discharge from the ICU. We isolated AACT from plasma depleted for albumin, IgG and serotransferrin and used high-resolution native mass spectrometry to qualitatively and quantitatively monitor the multifaceted glycan microheterogeneity of desialylated AACT, which allowed us to monitor how changes in the glycoproteoform profiles reflected the patient's physiological state. Although we observed a general trend in the remodeling of the AACT glycoproteoform profiles, e.g. increased fucosylation and branching/LacNAc elongation, each patient exhibited unique features and responses, providing a resilient proof-of-concept for the importance of personalized longitudinal glycoproteoform profiling. Importantly, we observed that the AACT glycoproteoform changes induced by sepsis did not readily subside after discharge from ICU.


Assuntos
Proteoma , Sepse/sangue , Serpinas/sangue , alfa 1-Antiquimotripsina/sangue , Biomarcadores/sangue , Bases de Dados Factuais , Glicosilação , Humanos , Espectrometria de Massas , Valor Preditivo dos Testes , Prognóstico , Proteômica , Sepse/diagnóstico , Sepse/terapia , Fatores de Tempo
13.
J Biol Chem ; 294(52): 20233-20245, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31719144

RESUMO

Anti-neutrophil cytoplasmic autoantibodies (ANCAs) are directed against lysosomal components of neutrophils. ANCAs directed to proteinase 3 and myeloperoxidase (MPO) in particular are associated with distinct forms of small vessel vasculitides. MPO is an abundant neutrophil-derived heme protein that is part of the antimicrobial defense system. The protein is typically present in the azurophilic granules of neutrophils, but a large portion may also enter the extracellular space. It remains unclear why MPO is frequently the target of antibody-mediated autoimmune responses. MPO is a homodimeric glycoprotein, posttranslationally modified with complex sugars at specific sites. Glycosylation can strongly influence protein function, affecting its folding, receptor interaction, and backbone accessibility. MPO potentially can be heavily modified as it harbors 5 putative N-glycosylation sites (10 in the mature dimer). Although considered important for MPO structure and function, the full scope and relative abundance of the glycans attached to MPO is unknown. Here, combining bottom-up glycoproteomics and native MS approaches, we structurally characterized MPO from neutrophils of healthy human donors. We quantified the relative occupancy levels of the glycans at each of the five sites and observed complex heterogeneity and site-specific glycosylation. In particular, we detected glycosylation phenotypes uncommon for glycoproteins in the extracellular space, such as a high abundance of phosphorylated high-mannose species and severely truncated small glycans having the size of paucimannose or smaller. We hypothesize that the atypical glycosylation pattern found on MPO might contribute to its specific processing and presentation as a self-antigen by antigen-presenting cells.


Assuntos
Neutrófilos/enzimologia , Peroxidase/metabolismo , Glicopeptídeos/análise , Glicosilação , Humanos , Manose/química , Manose/metabolismo , Espectrometria de Massas , Peroxidase/química , Fosforilação , Polissacarídeos/química , Polissacarídeos/metabolismo
14.
Mol Cell Proteomics ; 18(8): 1479-1490, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31097672

RESUMO

Fetuin, also known as α-2-HS-glycoprotein (gene name: AHSG), is one of the more abundant glycoproteins secreted into the bloodstream. There are two frequently occurring alleles of human AHSG, resulting in three genotypes (AHSG*1, AHSG*2, and heterozygous AHSG1/2). The backbone amino acid sequences of fetuin coded by the AHSG*1 and AHSG*2 genes differ in two amino acids including one known O-glycosylation site (aa position 256). Although fetuin levels have been extensively studied, the originating genotype is often ignored in such analysis. As fetuin has been suggested repeatedly as a potential biomarker for several disorders, the question whether the gene polymorphism affects the fetuin profile is of great interest. In this work, we describe detailed proteoform profiles of fetuin, isolated from serum of 10 healthy and 10 septic patient individuals and investigate potential glycoproteogenomics correlations, e.g. how gene polymorphisms affect glycosylation. We established an efficient method for fetuin purification from individuals' serum using ion-exchange chromatography. Subsequently, we performed hybrid mass spectrometric approaches integrating data from native mass spectra and peptide-centric MS analysis. Our data reveal a crucial effect of the gene polymorphism on the glycosylation pattern of fetuin. Moreover, we clearly observed increased fucosylation in the samples derived from the septic patients. Our serum proteoform analysis, targeted at one protein obtained from 20 individuals, exposes the wide variability in proteoform profiles, which should be taken into consideration when using fetuin as biomarker. Importantly, focusing on a single or few proteins, the quantitative proteoform profiles can provide, as shown here, already ample data to classify individuals by genotype and disease state.


Assuntos
alfa-2-Glicoproteína-HS/genética , alfa-2-Glicoproteína-HS/metabolismo , Glicosilação , Humanos , Polimorfismo Genético , Proteogenômica , Sepse/sangue , Sepse/genética
15.
J Proteome Res ; 17(8): 2861-2869, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29966421

RESUMO

Fetuin, also known as alpha-2-Heremans Schmid glycoprotein (AHSG), belongs to some of the most abundant glycoproteins secreted into the bloodstream. In blood, fetuins exhibit functions as carriers of metals and small molecules. Bovine fetuin, which harbors 3 N-glycosylation sites and a suggested half dozen O-glycosylation sites, has been used often as a model glycoprotein to test novel analytical workflows in glycoproteomics. Here we characterize and compare fetuin in depth, using protein from three different biological sources: human serum, bovine serum, and recombinant human fetuin expressed in HEK-293 cells, with the aim to elucidate similarities and differences between these proteins and the post-translational modifications they harbor. Combining data from high-resolution native mass spectrometry and glycopeptide centric LC-MS analysis, we qualitatively and quantitatively gather information on fetuin protein maturation, N-glycosylation, O-glycosylation, and phosphorylation. We provide direct experimental evidence that both the human serum and part of the recombinant proteins are processed into two chains (A and B) connected by a single interchain disulfide bridge, whereas bovine fetuin remains a single-chain protein. Although two N-glycosylation sites, one O-glycosylation site, and a phosphorylation site are conserved from bovine to human, the stoichiometry of the modifications and the specific glycoforms they harbor are quite distinct. Comparing serum and recombinant human fetuin, we observe that the serum protein harbors a much simpler proteoform profile, indicating that the recombinant protein is not ideally engineered to mimic human serum fetuin. Comparing the proteoform profile and post-translational modifications of human and bovine serum fetuin, we observe that, although the gene structures of these two proteins are alike, they represent quite distinct proteins when their glycoproteoform profile is also taken into consideration.


Assuntos
Processamento de Proteína Pós-Traducional , alfa-2-Glicoproteína-HS/metabolismo , Animais , Sítios de Ligação , Bovinos , Glicosilação , Células HEK293 , Humanos , Espectrometria de Massas , Fosforilação , Isoformas de Proteínas , Proteínas Recombinantes/genética , alfa-2-Glicoproteína-HS/genética
16.
Nat Commun ; 9(1): 2493, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29950687

RESUMO

Biomolecular mass spectrometry has matured strongly over the past decades and has now reached a stage where it can provide deep insights into the structure and composition of large cellular assemblies. Here, we describe a three-tiered hybrid mass spectrometry approach that enables the dissection of macromolecular complexes in order to complement structural studies. To demonstrate the capabilities of the approach, we investigate ribosomes, large ribonucleoprotein particles consisting of a multitude of protein and RNA subunits. We identify sites of sequence processing, protein post-translational modifications, and the assembly and stoichiometry of individual ribosomal proteins in four distinct ribosomal particles of bacterial, plant and human origin. Amongst others, we report extensive cysteine methylation in the zinc finger domain of the human S27 protein, the heptameric stoichiometry of the chloroplastic stalk complex, the heterogeneous composition of human 40S ribosomal subunits and their association to the CrPV, and HCV internal ribosome entry site RNAs.

17.
J Am Soc Mass Spectrom ; 29(6): 1099-1110, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29532326

RESUMO

The human complement hetero-trimeric C8αßγ (C8) protein assembly (~ 150 kDa) is an important component of the membrane attack complex (MAC). C8 initiates membrane penetration and coordinates MAC pore formation. Here, we charted in detail the structural micro-heterogeneity within C8, purified from human plasma, combining high-resolution native mass spectrometry and (glyco)peptide-centric proteomics. The intact C8 proteoform profile revealed at least ~ 20 co-occurring MS signals. Additionally, we employed ion exchange chromatography to separate purified C8 into four distinct fractions. Their native MS analysis revealed even more detailed structural micro-heterogeneity on C8. Subsequent peptide-centric analysis, by proteolytic digestion of C8 and LC-MS/MS, provided site-specific quantitative profiles of different types of C8 glycosylation. Combining all this data provides a detailed specification of co-occurring C8 proteoforms, including experimental evidence on N-glycosylation, C-mannosylation, and O-glycosylation. In addition to the known N-glycosylation sites, two more N-glycosylation sites were detected on C8. Additionally, we elucidated the stoichiometry of all C-mannosylation sites in all the thrombospondin-like (TSP) domains of C8α and C8ß. Lastly, our data contain the first experimental evidence of O-linked glycans located on C8γ. Albeit low abundant, these O-glycans are the first PTMs ever detected on this subunit. By placing the observed PTMs in structural models of free C8 and C8 embedded in the MAC, it may be speculated that some of the newly identified modifications may play a role in the MAC formation. Graphical Abstract ᅟ.


Assuntos
Complemento C8/química , Sequência de Aminoácidos , Cromatografia por Troca Iônica , Glicosilação , Humanos , Modelos Moleculares , Peptídeos/análise , Multimerização Proteica , Espectrometria de Massas em Tandem
18.
J Proteome Res ; 17(3): 1216-1226, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29376659

RESUMO

Charge deconvolution infers the mass from mass over charge (m/z) measurements in electrospray ionization mass spectra. When applied over a wide input m/z or broad target mass range, charge-deconvolution algorithms can produce artifacts, such as false masses at one-half or one-third of the correct mass. Indeed, a maximum entropy term in the objective function of MaxEnt, the most commonly used charge deconvolution algorithm, favors a deconvolved spectrum with many peaks over one with fewer peaks. Here we describe a new "parsimonious" charge deconvolution algorithm that produces fewer artifacts. The algorithm is especially well-suited to high-resolution native mass spectrometry of intact glycoproteins and protein complexes. Deconvolution of native mass spectra poses special challenges due to salt and small molecule adducts, multimers, wide mass ranges, and fewer and lower charge states. We demonstrate the performance of the new deconvolution algorithm on a range of samples. On the heavily glycosylated plasma properdin glycoprotein, the new algorithm could deconvolve monomer and dimer simultaneously and, when focused on the m/z range of the monomer, gave accurate and interpretable masses for glycoforms that had previously been analyzed manually using m/z peaks rather than deconvolved masses. On therapeutic antibodies, the new algorithm facilitated the analysis of extensions, truncations, and Fab glycosylation. The algorithm facilitates the use of native mass spectrometry for the qualitative and quantitative analysis of protein and protein assemblies.


Assuntos
Algoritmos , Anticorpos Monoclonais Humanizados/análise , Cetuximab/análise , Glicoproteínas/análise , Imunoglobulina G/análise , Infliximab/análise , Properdina/análise , Daclizumabe , Entropia , Glicosilação , Humanos , Fragmentos de Peptídeos/análise , Mapeamento de Peptídeos , Proteólise , Soluções , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Espectrometria de Massas por Ionização por Electrospray/métodos , Eletricidade Estática , Tripsina/química
19.
Trends Biotechnol ; 35(7): 598-609, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28527536

RESUMO

Glycoproteomics is an important subdiscipline of proteomics. Mass spectrometry (MS)-based glycoproteomics has relied so far on two levels of analysis, targeting either the released glycans or digested glycopeptides. However, limitations of these approaches, caused by the vast structural microheterogeneity that glycoproteins can exhibit, have become evident. Therefore, concomitant methods enabling deep characterization of all discrete glycoforms are essential to extend our functional understanding of the glycoproteome. Here, we discuss recent progress, particularly in protein-centric approaches. High-resolution native MS appears to be especially promising in revealing the glycoform profile of glycoproteins. We propose that systematically integrating MS data acquired at the glycan, glycopeptide, and glycoprotein levels best enhances our understanding of the glycoproteome.


Assuntos
Glicopeptídeos/metabolismo , Glicoproteínas/metabolismo , Espectrometria de Massas/métodos , Proteômica/métodos , Animais , Glicopeptídeos/química , Glicoproteínas/química , Humanos
20.
Anal Chem ; 89(6): 3483-3491, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28221766

RESUMO

The human complement C9 protein (∼65 kDa) is a member of the complement pathway. It plays an essential role in the membrane attack complex (MAC), which forms a lethal pore on the cellular surface of pathogenic bacteria. Here, we charted in detail the structural microheterogeneity of C9 purified from human blood serum, using an integrative workflow combining high-resolution native mass spectrometry and (glyco)peptide-centric proteomics. The proteoform profile of C9 was acquired by high-resolution native mass spectrometry, which revealed the co-occurrence of ∼50 distinct mass spectrometry (MS) signals. Subsequent peptide-centric analysis, through proteolytic digestion of C9 and liquid chromatography (LC)-tandem mass spectrometry (MS/MS) measurements of the resulting peptide mixtures, provided site-specific quantitative profiles of three different types of C9 glycosylation and validation of the native MS data. Our study provides a detailed specification, validation, and quantification of 15 co-occurring C9 proteoforms and the first direct experimental evidence of O-linked glycans in the N-terminal region. Additionally, next to the two known glycosylation sites, a third novel, albeit low abundant, N-glycosylation site on C9 is identified, which surprisingly does not possess the canonical N-glycosylation sequence N-X-S/T. Our data also reveal a binding of up to two Ca2+ ions to C9. Mapping all detected and validated sites of modifications on a structural model of C9, as present in the MAC, hints at their putative roles in pore formation or receptor interactions. The applied methods herein represent a powerful tool for the unbiased in-depth analysis of plasma proteins and may advance biomarker discovery, as aberrant glycosylation profiles may be indicative of the pathophysiological state of the patients.


Assuntos
Complemento C9/metabolismo , Proteômica , Cromatografia Líquida , Complemento C9/química , Glicosilação , Humanos , Espectrometria de Massas , Modelos Moleculares , Conformação Proteica , Mapeamento de Interação de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...