Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fluids Barriers CNS ; 20(1): 64, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620930

RESUMO

BACKGROUND: The blood brain barrier limits entry of macromolecular diagnostic and therapeutic cargos. Blood brain barrier transcytosis via receptor mediated transport systems, such as the transferrin receptor, can be used to carry macromolecular cargos with variable efficiency. Transcytosis involves trafficking through acidified intracellular vesicles, but it is not known whether pH-dependent unbinding of transport shuttles can be used to improve blood brain barrier transport efficiency. METHODS: A mouse transferrin receptor binding nanobody, NIH-mTfR-M1, was engineered to confer greater unbinding at pH 5.5 vs 7.4 by introducing multiple histidine mutations. The histidine mutant nanobodies were coupled to neurotensin for in vivo functional blood brain barrier transcytosis testing via central neurotensin-mediated hypothermia in wild-type mice. Multi-nanobody constructs including the mutant M1R56H, P96H, Y102H and two copies of the P2X7 receptor-binding 13A7 nanobody were produced to test proof-of-concept macromolecular cargo transport in vivo using quantitatively verified capillary depleted brain lysates and in situ histology. RESULTS: The most effective histidine mutant, M1R56H, P96H, Y102H-neurotensin, caused > 8 °C hypothermia after 25 nmol/kg intravenous injection. Levels of the heterotrimeric construct M1R56H, P96H, Y102H-13A7-13A7 in capillary depleted brain lysates peaked at 1 h and were 60% retained at 8 h. A control construct with no brain targets was only 15% retained at 8 h. Addition of the albumin-binding Nb80 nanobody to make M1R56H, P96H, Y102H-13A7-13A7-Nb80 extended blood half-life from 21 min to 2.6 h. At 30-60 min, biotinylated M1R56H, P96H, Y102H-13A7-13A7-Nb80 was visualized in capillaries using in situ histochemistry, whereas at 2-16 h it was detected in diffuse hippocampal and cortical cellular structures. Levels of M1R56H, P96H, Y102H-13A7-13A7-Nb80 reached more than 3.5 percent injected dose/gram of brain tissue after 30 nmol/kg intravenous injection. However, higher injected concentrations did not result in higher brain levels, compatible with saturation and an apparent substrate inhibitory effect. CONCLUSION: The pH-sensitive mouse transferrin receptor binding nanobody M1R56H, P96H, Y102H may be a useful tool for rapid and efficient modular transport of diagnostic and therapeutic macromolecular cargos across the blood brain barrier in mouse models. Additional development will be required to determine whether this nanobody-based shuttle system will be useful for imaging and fast-acting therapeutic applications.


Assuntos
Barreira Hematoencefálica , Hipotermia , Animais , Camundongos , Histidina , Neurotensina , Transcitose , Concentração de Íons de Hidrogênio
2.
Cell Rep ; 42(8): 112820, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37481719

RESUMO

Continuous color polymorphisms can serve as a tractable model for the genetic and developmental architecture of traits. Here we investigated continuous color variation in Colias eurytheme and Colias philodice, two species of sulphur butterflies that hybridize in sympatry. Using quantitative trait locus (QTL) analysis and high-throughput color quantification, we found two interacting large-effect loci affecting orange-to-yellow chromaticity. Knockouts of red Malpighian tubules (red), likely involved in endosomal maturation, result in depigmented wing scales. Additionally, the transcription factor bric-a-brac can act as a modulator of orange pigmentation. We also describe the QTL architecture of other continuously varying traits, together supporting a large-X effect model where the genetic control of species-defining traits is enriched on sex chromosomes. This study sheds light on the range of possible genetic architectures that can underpin a continuously varying trait and illustrates the power of using automated measurement to score phenotypes that are not always conspicuous to the human eye.


Assuntos
Borboletas , Animais , Humanos , Borboletas/genética , Simpatria , Pigmentação/genética , Locos de Características Quantitativas/genética , Polimorfismo Genético , Asas de Animais
3.
bioRxiv ; 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37333358

RESUMO

Background: The blood brain barrier limits entry of macromolecular diagnostic and therapeutic cargos. Blood brain barrier transcytosis via receptor mediated transport systems, such as the transferrin receptor, can be used to carry macromolecular cargos with variable efficiency. Transcytosis involves trafficking through acidified intracellular vesicles, but it is not known whether pH-dependent unbinding of transport shuttles can be used to improve blood brain barrier transport efficiency. Methods: A mouse transferrin receptor binding nanobody, NIH-mTfR-M1, was engineered to confer greater unbinding at pH 5.5 vs 7.4 by introducing multiple histidine mutations. The histidine mutant nanobodies were coupled to neurotensin for in vivo functional blood brain barrier transcytosis testing via central neurotensin-mediated hypothermia in wild-type mice. Multi-nanobody constructs including the mutant M1 R56H, P96H, Y102H and two copies of the P2X7 receptor-binding 13A7 nanobody were produced to test proof-of-concept macromolecular cargo transport in vivo using quantitatively verified capillary depleted brain lysates and in situ histology. Results: The most effective histidine mutant, M1 R56H, P96H, Y102H -neurotensin, caused >8°C hypothermia after 25 nmol/kg intravenous injection. Levels of the heterotrimeric construct M1 56,96,102His -13A7-13A7 in capillary depleted brain lysates peaked at 1 hour and were 60% retained at 8 hours. A control construct with no brain targets was only 15% retained at 8 hours. Addition of the albumin-binding Nb80 nanobody to make M1 R56H, P96H, Y102H -13A7-13A7-Nb80 extended blood half-life from 21 minutes to 2.6 hours. At 30-60 minutes, biotinylated M1 R56H, P96H, Y102H -13A7-13A7-Nb80 was visualized in capillaries using in situ histochemistry, whereas at 2-16 hours it was detected in diffuse hippocampal and cortical cellular structures. Levels of M1 R56H, P96H, Y102H -13A7-13A7-Nb80 reached more than 3.5 percent injected dose/gram of brain tissue after 30 nmol/kg intravenous injection. However, higher injected concentrations did not result in higher brain levels, compatible with saturation and an apparent substrate inhibitory effect. Conclusion: The pH-sensitive mouse transferrin receptor binding nanobody M1 R56H, P96H, Y102H may be a useful tool for rapid and efficient modular transport of diagnostic and therapeutic macromolecular cargos across the blood brain barrier in mouse models. Additional development will be required to determine whether this nanobody-based shuttle system will be useful for imaging and fast-acting therapeutic applications.

4.
J Exp Zool B Mol Dev Evol ; 338(6): 382-387, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35189035

RESUMO

Classical Drosophila eye color mutations have unearthed a toolkit of genes that have permitted candidate gene studies of the outstanding diversity of coloration patterns in other insects. The gene underlying the eye color phenotypes of the red Malphigian tubules (red) fly mutant was mapped to a LysM domain gene of unknown molecular function. Here, we used RNAi to test the role of a red ortholog in the pigmentation of the milkweed bug Oncopeltus fasciatus, and contrast its effect with the ommochrome biosynthetic pathway gene vermilion (ver). Pigmentation was reduced in the cuticle of embryonic legs and first instar abdomens following parental RNAi against red, but not against ver, likely reflecting an effect on pterin biogenesis. Nymphal RNAi of red and ver both resulted in adult eye depigmentation, consistent with an effect on ommochrome content. These results suggest red loss-of-function impacts biochemically distinct types of pigments, and we discuss its putative role in the biogenesis of lysosome-related organelles such as ommochromasomes and pterinosomes.


Assuntos
Heterópteros , Pigmentação , Animais , Drosophila/genética , Heterópteros/genética , Fenótipo , Pigmentação/genética , Interferência de RNA
5.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35012980

RESUMO

Mating cues evolve rapidly and can contribute to species formation and maintenance. However, little is known about how sexual signals diverge and how this variation integrates with other barrier loci to shape the genomic landscape of reproductive isolation. Here, we elucidate the genetic basis of ultraviolet (UV) iridescence, a courtship signal that differentiates the males of Colias eurytheme butterflies from a sister species, allowing females to avoid costly heterospecific matings. Anthropogenic range expansion of the two incipient species established a large zone of secondary contact across the eastern United States with strong signatures of genomic admixtures spanning all autosomes. In contrast, Z chromosomes are highly differentiated between the two species, supporting a disproportionate role of sex chromosomes in speciation known as the large-X (or large-Z) effect. Within this chromosome-wide reproductive barrier, linkage mapping indicates that cis-regulatory variation of bric a brac (bab) underlies the male UV-iridescence polymorphism between the two species. Bab is expressed in all non-UV scales, and butterflies of either species or sex acquire widespread ectopic iridescence following its CRISPR knockout, demonstrating that Bab functions as a suppressor of UV-scale differentiation that potentiates mating cue divergence. These results highlight how a genetic switch can regulate a premating signal and integrate with other reproductive barriers during intermediate phases of speciation.


Assuntos
Borboletas/genética , Borboletas/efeitos da radiação , Genes de Troca , Iridescência/genética , Enxofre/química , Raios Ultravioleta , Animais , Sistemas CRISPR-Cas/genética , Cromossomos/genética , Genes de Insetos , Loci Gênicos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Iridescência/efeitos da radiação , Masculino , Comportamento Sexual Animal/fisiologia , Especificidade da Espécie , Simpatria/genética , Asas de Animais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...