Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bone Res ; 10(1): 56, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028492

RESUMO

Interleukin-27 is a pleiotropic cytokine whose functions during bacterial infections remain controversial, and its role in patients with S. aureus osteomyelitis is unknown. To address this knowledge gap, we completed a clinical study and observed elevated serum IL-27 levels (20-fold higher, P < 0.05) in patients compared with healthy controls. Remarkably, IL-27 serum levels were 60-fold higher in patients immediately following septic death than in uninfected patients (P < 0.05), suggesting a pathogenic role of IL-27. To test this hypothesis, we evaluated S. aureus osteomyelitis in WT and IL-27Rα-/- mice with and without exogenous IL-27 induction by intramuscular injection of rAAV-IL-27p28 or rAAV-GFP, respectively. We found that IL-27 was induced at the surgical site within 1 day of S. aureus infection of bone and was expressed by M0, M1 and M2 macrophages and osteoblasts but not by osteoclasts. Unexpectedly, exogenous IL-27p28 (~2 ng·mL-1 in serum) delivery ameliorated soft tissue abscesses and peri-implant bone loss during infection, accompanied by enhanced local IL-27 expression, significant accumulation of RORγt+ neutrophils at the infection site, a decrease in RANK+ cells, and compromised osteoclast formation. These effects were not observed in IL-27Rα-/- mice compared with WT mice, suggesting that IL-27 is dispensable for immunity but mediates redundant immune and bone cell functions during infection. In vitro studies and bulk RNA-seq of infected tibiae showed that IL-27 increased nos1, nos2, il17a, il17f, and rorc expression but did not directly stimulate chemotaxis. Collectively, these results identify a novel phenomenon of IL-27 expression by osteoblasts immediately following S. aureus infection of bone and suggest a protective role of systemic IL-27 in osteomyelitis.

2.
Stem Cells Dev ; 30(19): 970-980, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34428990

RESUMO

The core function of hematopoietic stem and progenitor cells (HSPCs) is to provide lifelong production of all lineages of the blood and immune cells. The mechanisms that modulate HSPC homeostasis and lineage biasing are not fully understood. Growing evidence implicates the aryl hydrocarbon receptor (AHR), an environment-sensing transcription factor, as a regulator of hematopoiesis. AHR ligands modulate the frequency of mature hematopoietic cells in the bone marrow and periphery, while HSPCs from mice lacking AHR (AHR KO) have increased proliferation. Yet, whether AHR modulates HSPC lineage potential and directs differentiation toward specific lineage-biased progenitors is not well understood. This study revealed that AHR KO mice have an increased proportion of myeloid-biased HSCs and myeloid-biased multipotent progenitor (MPP3) cells. Utilizing inducible AHR knockout mice (iAHR KO), it was discovered that acute deletion of AHR doubled the number of MPP3 cells and altered the composition of downstream lineage-committed progenitors, such as increased frequency of pregranulocyte/premonocyte committed progenitors. Furthermore, in vivo antagonism of the AHR led to a 2.5-fold increase in the number of MPP3 cells and promoted myeloid-biased differentiation. Using hematopoietic-specific conditional AHR knockout mice (AHRVav1) revealed that increased frequency of myeloid-biased HSCs and myeloid-biased progenitors is driven by AHR signaling that is intrinsic to the hematopoietic compartment. These findings demonstrate that the AHR plays a pivotal role in regulating steady-state hematopoiesis, influencing HSPC homeostasis and lineage potential. In addition, the data presented provide potential insight into how deliberate modulation of AHR signaling could help with the treatment of a broad range of diseases that require the hematopoietic compartment.


Assuntos
Hematopoese , Receptores de Hidrocarboneto Arílico , Animais , Diferenciação Celular/genética , Hematopoese/genética , Células-Tronco Hematopoéticas , Homeostase , Camundongos , Camundongos Knockout , Receptores de Hidrocarboneto Arílico/genética
3.
Immunohorizons ; 3(6): 219-235, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31356168

RESUMO

Activation of the ligand inducible aryl hydrocarbon receptor (AhR) during primary influenza A virus infection diminishes host responses by negatively regulating the ability of dendritic cells (DC) to prime naive CD8+ T cells, which reduces the generation of CTL. However, AhR-regulated genes and signaling pathways in DCs are not fully known. In this study, we used unbiased gene expression profiling to identify differentially expressed genes and signaling pathways in DCs that are modulated by AhR activation in vivo. Using the prototype AhR agonist TCDD, we identified the lectin receptor Cd209a (DC-SIGN) and chemokine Ccl17 as novel AhR target genes. We further show the percentage of DCs expressing CD209a on their surface was significantly decreased by AhR activation during infection. Whereas influenza A virus infection increased CCL17 protein levels in the lung and lung-draining lymph nodes, this was significantly reduced following AhR activation. Targeted excision of AhR in the hematopoietic compartment confirmed AhR is required for downregulation of CCL17 and CD209a. Loss of AhR's functional DNA-binding domain demonstrates that AhR activation alone is necessary but not sufficient to drive downregulation. AhR activation induced similar changes in gene expression in human monocyte-derived DCs. Analysis of the murine and human upstream regulatory regions of Cd209a and Ccl17 revealed a suite of potential transcription factor partners for AhR, which may coregulate these genes in vivo. This study highlights the breadth of AhR-regulated pathways within DCs, and that AhR likely interacts with other transcription factors to modulate DC functions during infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Vírus da Influenza A/fisiologia , Pulmão/imunologia , Infecções por Orthomyxoviridae/imunologia , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Moléculas de Adesão Celular/metabolismo , Diferenciação Celular , Quimiocina CCL17/metabolismo , Citotoxicidade Imunológica , Genoma , Evasão da Resposta Imune , Lectinas Tipo C/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dibenzodioxinas Policloradas/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Transcriptoma
4.
Curr Opin Toxicol ; 10: 54-59, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30035244

RESUMO

Significant advances have been made recent years elucidating antiviral immune mechanisms that protect the host from viral infection. Similarly, our understanding of how viruses bind, enter, and replicate within host cells has continued to grow. Yet, viruses continue to take a toll on human health. The influence of chemicals in the environment is among key factors that influence outcomes of viral infection. There is a growing appreciation of the effects that exogenous environmental chemical exposures have on the immune system and antiviral immunity. Epidemiological studies have linked a variety of chemical exposures to poorer health, increased incidence of infection, and worsened vaccine responses. However, the mechanisms that govern these associations are not well understood, limiting our ability to predict or mitigate the effects of environmental exposures on public health. This brief review focuses on recent advances in the field, highlighting novel in vitro and in vivo findings informed by past foundational studies. Furthermore, current information suggests avenues of investigation that have yet to be explored, but which will significantly impact on our understanding about how environmental exposures impact viral defenses, vaccine efficacy, and the spread of contemporary and emerging viral pathogens.

5.
J Biol Chem ; 288(35): 25098-25108, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-23857584

RESUMO

Activation of the FcγR via antigen containing immune complexes can lead to the generation of reactive oxygen species, which are potent signal transducing molecules. However, whether ROS contribute to FcγR signaling has not been studied extensively. We set out to elucidate the role of NADPH oxidase-generated ROS in macrophage activation following FcγR engagement using antigen-containing immune complexes. We hypothesized that NOX2 generated ROS is necessary for propagation of downstream FcγR signaling and initiation of the innate immune response. Following exposure of murine bone marrow-derived macrophages (BMDMs) to inactivated Francisella tularensis (iFt)-containing immune complexes, we observed a significant increase in the innate inflammatory cytokine IL-6 at 24 h compared with macrophages treated with Ft LVS-containing immune complexes. Ligation of the FcγR by opsonized Ft also results in significant ROS production. Macrophages lacking the gp91(phox) subunit of NOX2 fail to produce ROS upon FcγR ligation, resulting in decreased Akt phosphorylation and a reduction in the levels of IL-6 compared with wild type macrophages. Similar results were seen following infection of BMDMs with catalase deficient Ft that fail to scavenge hydrogen peroxide. In conclusion, our findings demonstrate that ROS participate in elicitation of an effective innate immune in response to antigen-containing immune complexes through FcγR.


Assuntos
Células da Medula Óssea/metabolismo , Peróxido de Hidrogênio/metabolismo , Interleucina-6/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Receptores de IgG/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Células da Medula Óssea/imunologia , Catalase/genética , Catalase/imunologia , Catalase/metabolismo , Francisella tularensis/enzimologia , Francisella tularensis/genética , Francisella tularensis/imunologia , Peróxido de Hidrogênio/imunologia , Imunidade Inata/fisiologia , Interleucina-6/genética , Interleucina-6/imunologia , Macrófagos/imunologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Knockout , NADPH Oxidase 2 , NADPH Oxidases/genética , NADPH Oxidases/imunologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de IgG/genética , Receptores de IgG/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia
6.
PLoS One ; 5(6): e11021, 2010 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-20544035

RESUMO

BACKGROUND: The recent H5N1 avian and H1N1 swine-origin influenza virus outbreaks reaffirm that the threat of a world-wide influenza pandemic is both real and ever-present. Vaccination is still considered the best strategy for protection against influenza virus infection but a significant challenge is to identify new vaccine approaches that offer accelerated production, broader protection against drifted and shifted strains, and the capacity to elicit anti-viral immune responses in the respiratory tract at the site of viral entry. As a safe alternative to live attenuated vaccines, the mucosal and systemic immunogenicity of an H1N1 influenza (A/New Caledonia/20/99) HA DNA vaccine administered by particle-mediated epidermal delivery (PMED or gene gun) was analyzed in rhesus macaques. METHODOLOGY/PRINCIPAL FINDINGS: Macaques were immunized at weeks 0, 8, and 16 using a disposable single-shot particle-mediated delivery device designed for clinical use that delivers plasmid DNA directly into cells of the epidermis. Significant levels of hemagglutination inhibiting (HI) antibodies and cytokine-secreting HA-specific T cells were observed in the periphery of macaques following 1-3 doses of the PMED HA DNA vaccine. In addition, HA DNA vaccination induced detectable levels of HA-specific mucosal antibodies and T cells in the lung and gut-associated lymphoid tissues of vaccinated macaques. Importantly, co-delivery of a DNA encoding the rhesus macaque GM-CSF gene was found to significantly enhance both the systemic and mucosal immunogenicity of the HA DNA vaccine. CONCLUSIONS/SIGNIFICANCE: These results provide strong support for the development of a particle-mediated epidermal DNA vaccine for protection against respiratory pathogens such as influenza and demonstrate, for the first time, the ability of skin-delivered GM-CSF to serve as an effective mucosal adjuvant for vaccine induction of immune responses in the gut and respiratory tract.


Assuntos
Adjuvantes Imunológicos/farmacologia , Anticorpos Antivirais/biossíntese , Epiderme/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Vírus da Influenza A Subtipo H1N1/imunologia , Mucosa/efeitos dos fármacos , Vacinas de DNA/administração & dosagem , Animais , Anticorpos Antivirais/sangue , Imunidade Celular/efeitos dos fármacos , Macaca mulatta , Linfócitos T/imunologia , Vacinas de DNA/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...