Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 121(1): 281-290, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37750676

RESUMO

Protocols for the construction of large, deeply mutagenized protein encoding libraries via Golden Gate assembly of synthetic DNA cassettes employ disparate, system-specific methodology. Here we present a standardized Golden Gate method for building user-defined libraries. We demonstrate that a 25 µL reaction, using 40 fmol of input DNA, can generate a library on the order of 1 × 106 members and that reaction volume or input DNA concentration can be scaled up with no losses in transformation efficiency. Such libraries can be constructed from dsDNA cassettes generated either by degenerate oligonucleotides or oligo pools. We demonstrate its real-world effectiveness by building custom, user-defined libraries on the order of 104 -107 unique protein encoding variants for two orthogonal protein engineering systems. We include a detailed protocol and provide several general-use destination vectors.


Assuntos
DNA , Biologia Sintética , Biologia Sintética/métodos , DNA/metabolismo , Engenharia de Proteínas , Biblioteca Gênica , Mutagênese , Vetores Genéticos , Clonagem Molecular
2.
iScience ; 25(9): 104914, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-35971553

RESUMO

The rapid spread of SARS-CoV-2 variants poses a constant threat of escape from monoclonal antibody and vaccine countermeasures. Mutations in the ACE2 receptor binding site on the surface S protein have been shown to disrupt antibody binding and prevent viral neutralization. Here, we used a directed evolution-based approach to engineer three neutralizing antibodies for enhanced binding to S protein. The engineered antibodies showed increased in vitro functional activity in terms of neutralization potency and/or breadth of neutralization against viral variants. Deep mutational scanning revealed that higher binding affinity reduces the total number of viral escape mutations. Studies in the Syrian hamster model showed two examples where the affinity-matured antibody provided superior protection compared to the parental antibody. These data suggest that monoclonal antibodies for antiviral indications would benefit from affinity maturation to reduce viral escape pathways and appropriate affinity maturation in vaccine immunization could help resist viral variation.

3.
STAR Protoc ; 2(4): 100869, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34568839

RESUMO

Here, we describe a protocol to identify escape mutants on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) receptor-binding domain (RBD) using a yeast screen combined with deep mutational scanning. Over 90% of all potential single S RBD escape mutants can be identified for monoclonal antibodies that directly compete with angiotensin-converting enzyme 2 for binding. Six to 10 antibodies can be assessed in parallel. This approach has been shown to determine escape mutants that are consistent with more laborious SARS-CoV-2 pseudoneutralization assays. For complete details on the use and execution of this protocol, please refer to Francino-Urdaniz et al. (2021).


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Análise Mutacional de DNA/métodos , Mutação , SARS-CoV-2/genética , Saccharomyces cerevisiae/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Sítios de Ligação , COVID-19/metabolismo , COVID-19/virologia , Humanos , Saccharomyces cerevisiae/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
4.
Cell Rep ; 37(1): 109771, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34587480

RESUMO

Understanding mechanisms of protective antibody recognition can inform vaccine and therapeutic strategies against SARS-CoV-2. We report a monoclonal antibody, 910-30, targeting the SARS-CoV-2 receptor-binding site for ACE2 as a member of a public antibody response encoded by IGHV3-53/IGHV3-66 genes. Sequence and structural analyses of 910-30 and related antibodies explore how class recognition features correlate with SARS-CoV-2 neutralization. Cryo-EM structures of 910-30 bound to the SARS-CoV-2 spike trimer reveal binding interactions and its ability to disassemble spike. Despite heavy-chain sequence similarity, biophysical analyses of IGHV3-53/3-66-encoded antibodies highlight the importance of native heavy:light pairings for ACE2-binding competition and SARS-CoV-2 neutralization. We develop paired heavy:light class sequence signatures and determine antibody precursor prevalence to be ∼1 in 44,000 human B cells, consistent with public antibody identification in several convalescent COVID-19 patients. These class signatures reveal genetic, structural, and functional immune features that are helpful in accelerating antibody-based medical interventions for SARS-CoV-2.


Assuntos
Enzima de Conversão de Angiotensina 2/imunologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Idoso , Enzima de Conversão de Angiotensina 2/química , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/ultraestrutura , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Formação de Anticorpos , Linfócitos B/imunologia , Sítios de Ligação , Chlorocebus aethiops , Microscopia Crioeletrônica , Células HEK293 , Humanos , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Pesadas de Imunoglobulinas/ultraestrutura , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/genética , Cadeias Leves de Imunoglobulina/imunologia , Cadeias Leves de Imunoglobulina/ultraestrutura , Masculino , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/química , Células Vero
5.
Cell Rep ; 36(9): 109627, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34416153

RESUMO

The potential emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) escape mutants is a threat to the efficacy of existing vaccines and neutralizing antibody (nAb) therapies. An understanding of the antibody/S escape mutation landscape is urgently needed to preemptively address this threat. Here we describe a rapid method to identify escape mutants for nAbs targeting the S receptor binding site. We identified escape mutants for five nAbs, including three from the public germline class VH3-53 elicited by natural coronavirus disease 2019 (COVID-19) infection. Escape mutations predominantly mapped to the periphery of the angiotensin-converting enzyme 2 (ACE2) recognition site on the RBD with K417, D420, Y421, F486, and Q493 as notable hotspots. We provide libraries, methods, and software as an openly available community resource to accelerate new therapeutic strategies against SARS-CoV-2.

6.
J Phys Chem B ; 125(29): 8021-8027, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34260251

RESUMO

Cavitation can occur when liquids are exposed to pressure waves of sufficient amplitude, producing rapidly expanding and collapsing gas bubbles that generate localized regions of high energy dissipation. When vials containing insulin were subjected to mechanical shock or when ultrasound was applied to the vials, the resulting cavitation events induced formation of insulin amyloid fibril nuclei that were detected by transmission electron microscopy and quantified by fluorescence spectroscopy following staining with the amyloid-sensitive dye thioflavin-T. Dropping insulin solutions in glass vials produced only minute amounts of insulin fibril nuclei, which could be detected by allowing the nuclei to grow. Cavitation-induced formation of amyloid aggregates may be relevant for iatrogenic insulin deposition disease, where insulin fibrils formed in vitro prior to administration to patients could serve as nuclei for growing fibril deposits in vivo.


Assuntos
Amiloide , Insulina , Humanos , Microscopia Eletrônica de Transmissão , Espectrometria de Fluorescência
7.
RSC Chem Biol ; 2(6): 1580-1589, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34977572

RESUMO

This mini-review presents a critical survey of techniques used for epitope mapping on the SARS-CoV-2 Spike protein. The sequence and structures for common neutralizing and non-neutralizing epitopes on the Spike protein are described as determined by X-ray crystallography, electron microscopy and linear peptide epitope mapping, among other methods. An additional focus of this mini-review is an analytical appraisal of different deep mutational scanning workflows for conformational epitope mapping and identification of mutants on the Spike protein which escape antibody neutralization. Such a focus is necessary as a critical review of deep mutational scanning for conformational epitope mapping has not been published. A perspective is presented on the use of different epitope determination methods for development of broadly potent antibody therapies and vaccines against SARS-CoV-2.

8.
Biotechnol J ; 15(9): e2000096, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32437086

RESUMO

Aggregation of therapeutic proteins can result from a number of stress conditions encountered during their manufacture, transportation, and storage. This work shows the effects of two interrelated sources of protein aggregation: the chemistry and structure of the surface of the container in which the protein is stored, and mechanical shocks that may result from handling of the formulation. How different mechanical stress conditions (dropping, tumbling, and agitation) and container surface passivation affect the stability of solutions of intravenous immunoglobulin are investigated. Application of mechanical shock causes cavitation to occur in the protein solution, followed by bubble collapse and the formation of high-velocity fluid microjets that impinged on container surfaces, leading to particle formation. Cavitation was observed after dropping of vials from heights as low as 5 cm, but polyethylene glycol (PEG) grafting provided temporary protection against drop-induced cavitation. PEG treatment of the vial surface reduced the formation of protein aggregates after repeated dropping events, most likely by reducing protein adsorption to container surfaces. These studies enable the development of new coatings and surface chemistries that can reduce the particulate formation induced by surface adsorption and/or mechanical shock.


Assuntos
Embalagem de Medicamentos , Imunoglobulinas Intravenosas , Adsorção , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...