Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(7)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38610281

RESUMO

In this study, we propose a low-cost piezoelectric flexible pressure sensor fabricated on Kapton® (Kapton™ Dupont) substrate by using aluminum nitride (AlN) thin film, designed for the monitoring of the respiration rate for a fast detection of respiratory anomalies. The device was characterized in the range of 15-30 breaths per minute (bpm), to simulate moderate difficult breathing, borderline normal breathing, and normal spontaneous breathing. These three breathing typologies were artificially reproduced by setting the expiratory to inspiratory ratios (E:I) at 1:1, 2:1, 3:1. The prototype was able to accurately recognize the breath states with a low response time (~35 ms), excellent linearity (R2 = 0.997) and low hysteresis. The piezoelectric device was also characterized by placing it in an activated carbon filter mask to evaluate the pressure generated by exhaled air through breathing acts. The results indicate suitability also for the monitoring of very weak breath, exhibiting good linearity, accuracy, and reproducibility, in very low breath pressures, ranging from 0.09 to 0.16 kPa. These preliminary results are very promising for the future development of smart wearable devices able to monitor different patients breathing patterns, also related to breathing diseases, providing a suitable real-time diagnosis in a non-invasive and fast way.


Assuntos
Respiração , Taxa Respiratória , Humanos , Reprodutibilidade dos Testes , Compostos de Alumínio
2.
Sensors (Basel) ; 23(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37687786

RESUMO

The acoustic waves of higher orders propagating in a layered structure consisting of a silicon plate coated with piezoelectric ZnO and/or AlN films were used for the development of a sensor with selective sensitivity to liquid viscosity η in the range of 1-1500 cP. In that range, this sensor possessed low sensitivity to liquid conductivity σ and temperature T in the ranges of 0-2 S/m and 0-55 °C, respectively. The amplitude responses insensitive to the temperature instead of the phase were used to provide the necessary selectivity. The sensor was based on a weak piezoactive acoustic wave of higher order. The volume of the probes sufficient for the measurements was about 100 µL. The characteristics of the sensors were optimized by varying the thicknesses of the structure layers, number of layers, wavelength, wave propagation direction, and the order of the acoustic waves. It was shown that in the case of the layered structure, it is possible to obtain practically the same selective sensitivity toward viscosity as for acoustic waves in pure ST, X quartz. The most appropriate waves for this purpose are quasi-longitudinal and Lamb waves of higher order with in-plane polarization. It was found that for various ranges of viscosity η = 1-20 cP, 20-100 cP, and 100-1500 cP, the maximum sensitivity of the appropriate wave is equal to 0.26 dB/cP, 0.087 dB/cP, and 0.013 dB/cP, respectively. The sensitivity of the waves under study toward the electric conductivity of the liquid is much less than the sensitivity to liquid viscosity. These two responses become comparable only for very small η < 2 cP. The waves investigated have shown no temperature responses in contact with air, but in the presence of liquid, they increase depending on liquid properties. The temperature dependence of liquid viscosity is measurable by the same sensors. The results obtained have shown the possibility of designing acoustic liquid viscosity sensors based on multilayered structures. The set of possible acoustic waves in layered structures possesses modified propagation characteristics (various polarization, phase velocities, electromechanical coupling coefficients, and attenuations). It allows choosing an optimal acoustic wave to detect liquid viscosity only.

3.
Micromachines (Basel) ; 14(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36984903

RESUMO

Monitoring of ions in real-time directly in cell culture systems and in organ-on-a-chip platforms represents a significant investigation tool to understand ion regulation and distribution in the body and ions' involvement in biological mechanisms and specific pathologies. Innovative flexible sensors coupling electrochemical stripping analysis (square wave anodic stripping voltammetry, SWASV) with an ion selective membrane (ISM) were developed and integrated in Transwell™ cell culture systems to investigate the transport of zinc and copper ions across a human intestinal Caco-2 cell monolayer. The fabricated ion-selective sensors demonstrated good sensitivity (1 × 10-11 M ion concentration) and low detection limits, consistent with pathophysiological cellular concentration ranges. A non-invasive electrochemical impedance spectroscopy (EIS) analysis, in situ, across a selected spectrum of frequencies (10-105 Hz), and an equivalent circuit fitting were employed to obtain useful electrical parameters for cellular barrier integrity monitoring. Transepithelial electrical resistance (TEER) data and immunofluorescent images were used to validate the intestinal epithelial integrity and the permeability enhancer effect of ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) treatment. The proposed devices represent a real prospective tool for monitoring cellular and molecular events and for studies on gut metabolism/permeability. They will enable a rapid integration of these sensors into gut-on-chip systems.

4.
Sensors (Basel) ; 22(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36080972

RESUMO

A novel and low-cost framework for food traceability, composed by commercial and proprietary sensing devices, for the remote monitoring of air, water, soil parameters and herbicide contamination during the farming process, has been developed and verified in real crop environments. It offers an integrated approach to food traceability with embedded systems supervision, approaching the problem to testify the quality of the food product. Moreover, it fills the gap of missing low-cost systems for monitoring cropping environments and pesticides contamination, satisfying the wide interest of regulatory agencies and final customers for a sustainable farming. The novelty of the proposed monitoring framework lies in the realization and the adoption of a fully automated prototype for in situ glyphosate detection. This device consists of a custom-made and automated fluidic system which, leveraging on the Molecularly Imprinted Polymer (MIP) sensing technology, permits to detect unwanted glyphosate contamination. The custom electronic mainboard, called ElectroSense, exhibits both the potentiostatic read-out of the sensor and the fluidic control to accomplish continuous unattended measurements. The complementary monitored parameters from commercial sensing devices are: temperature, relative humidity, atmospheric pressure, volumetric water content, electrical conductivity of the soil, pH of the irrigation water, total Volatile Organic Compounds (VOCs) and equivalent CO2. The framework has been validated during the olive farming activity in an Italian company, proving its efficacy for food traceability. Finally, the system has been adopted in a different crop field where pesticides treatments are practiced. This has been done in order to prove its capability to perform first level detection of pesticide treatments. Good correlation results between chemical sensors signals and pesticides treatments are highlighted.


Assuntos
Praguicidas , Inocuidade dos Alimentos , Praguicidas/análise , Praguicidas/toxicidade , Solo/química , Tecnologia , Água
5.
Biosensors (Basel) ; 12(9)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36140084

RESUMO

Microbial fuel cells (MFCs) are a variety of bioelectrocatalytic devices that utilize the metabolism of microorganisms to generate electric energy from organic matter. This study investigates the possibility of using a novel PEDOT:PSS/graphene/Nafion composite in combination with acetic acid bacteria Gluconobacter oxydans to create a pure culture MFC capable of effective municipal wastewater treatment. The developed MFC was shown to maintain its activity for at least three weeks. The level of COD in municipal wastewater treatment was reduced by 32%; the generated power was up to 81 mW/m2 with a Coulomb efficiency of 40%. Combining the MFC with a DC/DC boost converter increased the voltage generated by two series-connected MFCs from 0.55 mV to 3.2 V. A maximum efficiency was achieved on day 8 of MFC operation and was maintained for a week; capacitors of 6800 µF capacity were fully charged in ~7 min. Thus, G. oxydans cells can become an important part of microbial consortia in MFCs used for treatment of wastewaters with reduced pH.


Assuntos
Fontes de Energia Bioelétrica , Gluconobacter oxydans , Grafite , Purificação da Água , Fontes de Energia Bioelétrica/microbiologia , Compostos Bicíclicos Heterocíclicos com Pontes , Eletricidade , Eletrodos , Polímeros de Fluorcarboneto , Polímeros , Águas Residuárias/química
6.
Nano Sel ; 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36721465

RESUMO

The recent SARS-CoV-2 pandemic has highlighted the urgent need for novel point-of-care devices to be promptly used for a rapid and reliable large screening analysis of several biomarkers like genetic sequences and antibodies. Currently, one of the main limitations of rapid tests is the high percentage of false negatives in the presence of variants and, in particular for the Omicron one. We demonstrate in this work the detection of SARS-CoV-2 and the Omicron variant with a cost-effective silicon nanosensor enabling high sensitivity, selectivity, and fast response. We have shown that a silicon (Si) nanowires (NW) platform detects both Sars-CoV-2 and its Omicron variant with a limit of detection (LoD) of four effective copies (cps), without any amplification of the genome, and with high selectivity. This ultrasensitive detection of 4 cps allows to obtain an extremely early diagnosis paving the way for efficient and widespread tracking. The sensor is made with industrially compatible techniques, which in perspective may allow easy and cost-effective industrialization.

7.
Int J Nanomedicine ; 16: 5153-5165, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34611399

RESUMO

INTRODUCTION: Small extracellular vesicles (sEVs), thanks to their cargo, are involved in cellular communication and play important roles in cell proliferation, growth, differentiation, apoptosis, stemness and embryo development. Their contribution to human pathology has been widely demonstrated and they are emerging as strategic biomarkers of cancer, neurodegenerative and cardiovascular diseases, and as potential targets for therapeutic intervention. However, the use of sEVs for medical applications is still limited due to the selectivity and sensitivity limits of the commonly applied approaches. METHODS: Novel sensing solutions based on nanomaterials are arising as strategic tools able to surpass traditional sensor limits. Among these, Si nanowires (Si NWs), realized with cost-effective industrially compatible metal-assisted chemical etching, are perfect candidates for sEV detection. RESULTS: In this paper, the realization of a selective sensor able to isolate, concentrate and quantify specific vesicle populations, from minimal volumes of biofluid, is presented. In particular, this Si NW platform has a detection limit of about 2×105 sEVs/mL and was tested with follicular fluid and blastocoel samples. Moreover, the possibility to detach the selectively isolated sEVs allowing further analyses with other approaches was demonstrated by SEM analysis and several PCRs performed on the RNA content of the detached sEVs. DISCUSSION: This platform overcomes the limit of detection of traditional methods and, most importantly, preserves the biological content of sEVs, opening the route toward a reliable liquid biopsy analysis.


Assuntos
Vesículas Extracelulares , Nanofios , Biomarcadores , Proliferação de Células , Humanos , Silício
8.
Sensors (Basel) ; 21(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200531

RESUMO

In this research, beam focusing in lithium niobate plate was studied for fundamental anti-symmetric (A0) and symmetric (S0) Lamb waves, and the shear-horizontal (SH0) wave of zero-order. Using the finite element method, appropriate configuration of the interdigital transducer with arc-like electrodes was modeled accounting for the anisotropy of the slowness curves and dispersion of the modes in the plate. Profiles of the focalized acoustic beams generated by the proposed transducer were theoretically analyzed. Based on the result of the analysis, relevant delay lines were fabricated and transfer functions (insertion loss) of the line were measured for SH0 wave in YX-lithium niobate plate. Using an electron scanning microscope, distribution of the electric fields of the same wave were visualized. The results of this study may be useful for hybrid devices and sensors combining nano and acoustoelectronic principles.

9.
Sensors (Basel) ; 21(5)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800949

RESUMO

The monitoring of some parameters, such as pressure loads, temperature, and glucose level in sweat on the plantar surface, is one of the most promising approaches for evaluating the health state of the diabetic foot and for preventing the onset of inflammatory events later degenerating in ulcerative lesions. This work presents the results of sensors microfabrication, experimental characterization and FEA-based thermal analysis of a 3D foot-insole model, aimed to advance in the development of a fully custom smart multisensory hardware-software monitoring platform for the diabetic foot. In this system, the simultaneous detection of temperature-, pressure- and sweat-based glucose level by means of full custom microfabricated sensors distributed on eight reading points of a smart insole will be possible, and the unit for data acquisition and wireless transmission will be fully integrated into the platform. Finite element analysis simulations, based on an accurate bioheat transfer model of the metabolic response of the foot tissue, demonstrated that subcutaneous inflamed lesions located up to the muscle layer, and ischemic damage located not below the reticular/fat layer, can be successfully detected. The microfabrication processes and preliminary results of functional characterization of flexible piezoelectric pressure sensors and glucose sensors are presented. Full custom pressure sensors generate an electric charge in the range 0-20 pC, proportional to the applied load in the range 0-4 N, with a figure of merit of 4.7 ± 1 GPa. The disposable glucose sensors exhibit a 0-6 mM (0-108 mg/dL) glucose concentration optimized linear response (for sweat-sensing), with a LOD of 3.27 µM (0.058 mg/dL) and a sensitivity of 21 µA/mM cm2 in the PBS solution. The technical prerequisites and experimental sensing performances were assessed, as preliminary step before future integration into a second prototype, based on a full custom smart insole with enhanced sensing functionalities.


Assuntos
Diabetes Mellitus , Pé Diabético , Dispositivos Eletrônicos Vestíveis , , Humanos , Sapatos , Suor
10.
Sensors (Basel) ; 20(21)2020 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-33171594

RESUMO

The concentration of wild-type tumour suppressor p53wt in cells and blood has a clinical significance for early diagnosis of some types of cancer. We developed a disposable, label-free, field-effect transistor-based immunosensor (BioFET), able to detect p53wt in physiological buffer solutions, over a wide concentration range. Microfabricated, high-purity gold electrodes were used as single-use extended gates (EG), which avoid direct interaction between the transistor gate and the biological solution. Debye screening, which normally hampers target charge effect on the FET gate potential and, consequently, on the registered FET drain-source current, at physiological ionic strength, was overcome by incorporating a biomolecule-permeable polymer layer on the EG electrode surface. Determination of an unknown p53wt concentration was obtained by calibrating the variation of the FET threshold voltage versus the target molecule concentration in buffer solution, with a sensitivity of 1.5 ± 0.2 mV/decade. The BioFET specificity was assessed by control experiments with proteins that may unspecifically bind at the EG surface, while 100pM p53wt concentration was established as limit of detection. This work paves the way for fast and highly sensitive tools for p53wt detection in physiological fluids, which deserve much interest in early cancer diagnosis and prognosis.


Assuntos
Técnicas Biossensoriais , Imunoensaio , Proteína Supressora de Tumor p53/análise , Soluções Tampão , Eletrodos , Ouro , Humanos , Transistores Eletrônicos
11.
Sensors (Basel) ; 20(12)2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545660

RESUMO

In the paper, the results of production of Ag inkjet printed interdigital transducers to the acoustic delay line based on Y-cut X-propagation direction of lithium niobate plate for the frequency range from 1 to 14 MHz are presented. Additionally, morphological, structural, and electro-physical characteristics of the obtained electrodes were investigated. Mathematical modeling of the excitation of acoustic waves by these electrode structures was carried out. Comparison of the theoretical results with experimental ones showed their qualitative and quantitative coincidences. It was shown that conventional inkjet printing can replace the complex photolithographic method for production of interdigital transducers for acoustic delay lines working up to 14 MHz. The resulting electrode structures make it possible to efficiently excite acoustic waves with a high value of electromechanical coupling coefficient in piezoelectric plates.

12.
ACS Appl Mater Interfaces ; 5(14): 6586-90, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23829424

RESUMO

The present work highlights the progress in the field of polymeric package reliability engineering for a flexible thermoelectric generator realized by thin-film technology on a Kapton substrate. The effects of different plasma treatments on the mechanical performance at the interface of a poly(dimethylsiloxane) (PDMS)/Kapton assembly were investigated. To increase the package mechanical stability of the realized wearable power source, the Kapton surface wettability after plasma exposure was investigated by static contact-angle measurements using deionized water and PDMS as test liquids. In fact, the well-known weak adhesion between PDMS and Kapton can lead to a delamination of the package with an unrecoverable damage of the generator. The plasma effect on the adhesion performances was evaluated by the scratch-test method. The best result was obtained by performing a nitrogen plasma treatment at a radio-frequency power of 20 W and a gas flow of 20 sccm, with a measured critical load of 1.45 N, which is 2.6 times greater than the value measured on an untreated Kapton substrate and 1.9 times greater than the one measured using a commercial primer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...