Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e16592, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313034

RESUMO

Environmental noise knows no boundaries, affecting even protected areas. Noise pollution, originating from both external and internal sources, imposes costs on these areas. It is associated with adverse health effects, while natural sounds contribute to cognitive and emotional improvements as ecosystem services. When it comes to parks, individual visitors hold unique perceptions of soundscapes, which can be shaped by various factors such as their motivations for visiting, personal norms, attitudes towards specific sounds, and expectations. In this study, we utilized linear models and geospatial data to evaluate how visitors' personal norms and attitudes, the park's acoustic environment, visitor counts, and the acoustic environment of visitors' neighborhoods influenced their perception of soundscapes at Muir Woods National Monument. Our findings indicate that visitors' subjective experiences had a greater impact on their perception of the park's soundscape compared to purely acoustic factors like sound level of the park itself. Specifically, we found that motivations to hear natural sounds, interference caused by noise, sensitivity to noise, and the sound levels of visitors' home neighborhoods influenced visitors' perception of the park's soundscape. Understanding how personal factors shape visitors' soundscape perception can assist urban and non-urban park planners in effectively managing visitor experiences and expectations.


Assuntos
Ecossistema , Recreação , Conservação dos Recursos Naturais , Ruído/efeitos adversos , Percepção
2.
PeerJ ; 10: e13297, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602893

RESUMO

Anthropogenic noise and its effects on acoustic communication have received considerable attention in recent decades. Yet, the natural acoustic environment's influence on communication and its role in shaping acoustic signals remains unclear. We used large-scale playbacks of ocean surf in coastal areas and whitewater river noise in riparian areas to investigate how natural sounds influences song structure in six songbird species. We recorded individuals defending territories in a variety of acoustic conditions across 19 study sites in California and 18 sites in Idaho. Acoustic characteristics across the sites included naturally quiet 'control' sites, 'positive control' sites that were adjacent to the ocean or a whitewater river and thus were naturally noisy, 'phantom' playback sites that were exposed to continuous broadcast of low-frequency ocean surf or whitewater noise, and 'shifted' playback sites with continuous broadcast of ocean surf or whitewater noise shifted up in frequency. We predicted that spectral and temporal song structure would generally correlate with background sound amplitude and that signal features would differ across site types based on the spectral profile of the acoustic environment. We found that the ways in which song structure varied with background acoustics were quite variable from species to species. For instance, in Idaho both the frequency bandwidth and duration of lazuli bunting (Passerina amoena) and song sparrow (Melospiza melodia) songs decreased with elevated background noise, but these song features were unrelated to background noise in the warbling vireo (Vireo gilvus), which tended to increase both the minimum and maximum frequency of songs with background noise amplitude. In California, the bandwidth of the trill of white-crowned sparrow (Zonotrichia leucophrys) song decreased with background noise amplitude, matching results of previous studies involving both natural and anthropogenic noise. In contrast, wrentit (Chamaea fasciata) song bandwidth was positively related to the amplitude of background noise. Although responses were quite heterogeneous, song features of all six species varied with amplitude and/or frequency of background noise. Collectively, these results provide strong evidence that natural soundscapes have long influenced vocal behavior. More broadly, the evolved behavioral responses to the long-standing challenges presented by natural sources of noise likely explain the many responses observed for species communicating in difficult signal conditions presented by human-made noise.


Assuntos
Rios , Vocalização Animal , Animais , Humanos , Vocalização Animal/fisiologia , Ruído/efeitos adversos , Som , Oceanos e Mares
3.
Oecologia ; 199(1): 217-228, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35522293

RESUMO

Traffic noise is one of the leading causes of reductions in animal abundances near roads. Acoustic masking of conspecific signals and adventitious cues is one mechanism that likely causes animals to abandon loud areas. However, masking effects can be difficult to document in situ and the effects of infrequent noise events may be impractical to study. Here, we present the Soundscapes model, a stochastic individual-based model that dynamically models the listening areas of animals searching for acoustic resources ("searchers"). The model also studies the masking effects of noise for human detections of the searchers. The model is set in a landscape adjacent to a road. Noise produced by vehicles traveling on that road is represented by calibrated spectra that vary with speed. Noise propagation is implemented using ISO-9613 procedures. We present demonstration simulations that quantify declines in searcher efficiency and human detection of searchers at relatively low traffic volumes, fewer than 50 vehicles per hour. Traffic noise is pervasive, and the Soundscapes model offers an extensible tool to study the effects of noise on bioacoustics monitoring, point-count surveys, the restorative value of natural soundscapes, and auditory performance in an ecological context.


Assuntos
Animais Selvagens , Ruído , Acústica , Animais , Recreação
4.
Proc Biol Sci ; 289(1971): 20220058, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35350855

RESUMO

The broken-wing display is a well-known and conspicuous deceptive signal used to protect birds' broods against diurnal terrestrial predators. Although commonly associated with shorebirds, it remains unknown how common the behaviour is across birds and what forces are associated with the evolution of the display. Here, we use the broken-wing display as a paradigmatic example to study the evolution of a behaviour across Aves. We show that the display is widespread: it has been described in 52 families spread throughout the phylogeny, suggesting that it independently evolved multiple times. Further, we evaluated the association with 16 ecological and life-history variables hypothesized to be related to the evolution of the broken-wing display. Eight variables were associated with the display. We found that species breeding farther from the equator, in more dense environments, with shorter incubation periods, and relatively little nest cover were more likely to perform the display, as were those in which only one parent incubates eggs, species that mob nest predators and species that are altricial or multi-brooded. Collectively, our comprehensive approach identified forces associated with the repeated evolution of this conspicuous display, thereby providing new insights into how deceptive behaviours evolve in the context of predator-prey interactions.


Assuntos
Aves , Comportamento Predatório , Animais , Humanos , Comportamento de Nidação , Filogenia
5.
Sci Total Environ ; 805: 150223, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34537710

RESUMO

Light and noise pollution from human activity are increasing at a dramatic rate. These sensory stimuli can have a wide range of effects on animal behavior, reproductive success, and physiology. However, less is known about the functional and community-level consequences of these sensory pollutants, especially when they co-occur. Using camera traps in a manipulative field experiment, we studied the effects of anthropogenic light and noise, singularly and in tandem, on richness and community turnover at both the taxa and functional group level as well as foraging activity. We showed that both light and noise pollution did alter taxonomic richness and that these effects can differ depending on the scale of observation. Increases in light levels had a negative effect on richness at the camera-level scale, but light-treated sites had the highest pooled (i.e., cumulative) richness of all treatment types. In contrast, noise was found to have a negative effect on cumulative richness; however, when both stimuli were present, the addition of night-lighting mitigated the effects of noise. Artificial light and moonlight had the strongest influence on community turnover, and results remained consistent at both the taxa and functional group level. Additionally, increases in ambient noise and moonlight, but not artificial light, reduced foraging activity. Our study provides evidence that alterations to the sensory environment can alter the richness and composition of communities and that effects can be scale-dependent and also alter foraging behavior. Unexpectedly, the addition of artificial light may have mitigated the negative effects of noise on cumulative taxonomic richness. This highlights the importance of researching the consequences of co-exposure to these globally common pollutants.


Assuntos
Iluminação , Ruído , Animais , Comportamento Animal , Humanos , Luz , Iluminação/efeitos adversos , Ruído/efeitos adversos , Reprodução , Vertebrados
6.
Integr Comp Biol ; 61(3): 1089-1097, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34251459

RESUMO

Light pollution, or the presence of artificial light at night (ALAN), is among the fastest growing but least understood anthropogenic stressor on the planet. While historically light pollution has not received attention comparable to climate change or chemical pollution, research over the past several decades has revealed the plethora of negative effects on humans, animals, and supporting ecosystems. As light pollution continues to grow in spatial, spectral, and temporal extent, we recognize the urgent need to understand how this affects circadian physiology, organismal fitness, life history traits and tradeoffs, population trends, and community interactions. Here, we aim to highlight background and foundational evidence of the effects of light pollution to present context and the basis for early light pollution studies. Next, we touch on several understudied topics where research is underway to fill gaps in our knowledge and provide the basis for future research. Last, we focus on questions that are vital to understanding the effects of ALAN on diverse natural systems and discuss the barriers we face conducting research on light pollution.


Assuntos
Ecossistema , Poluição Ambiental , Luz , Animais , Ritmo Circadiano
7.
Integr Comp Biol ; 61(3): 1202-1215, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34272862

RESUMO

Global expansion of lighting and noise pollution alters how animals receive and interpret environmental cues. However, we lack a cross-taxon understanding of how animal traits influence species vulnerability to this growing phenomenon. This knowledge is needed to improve the design and implementation of policies that mitigate or reduce sensory pollutants. We present results from an expert knowledge survey that quantified the relative influence of 21 ecological, anatomical, and physiological traits on the vulnerability of terrestrial vertebrates to elevated levels of anthropogenic lighting and noise. We aimed not only to quantify the importance of threats and the relative influence of traits as viewed by sensory and wildlife experts, but to examine knowledge gaps based on the variation in responses. Identifying traits that had less consensus can guide future research for strengthening ecologists' and conservation biologists' understanding of sensory abilities. Our findings, based on 280 responses of expert opinion, highlight the increasing recognition among experts that sensory pollutants are important to consider in management and conservation decisions. Participant responses show mounting threats to species with narrow niches; especially habitat specialists, nocturnal species, and those with the greatest ability to differentiate environmental visual and auditory cues. Our results call attention to the threat specialist species face and provide a generalizable understanding of which species require additional considerations when developing conservation policies and mitigation strategies in a world altered by expanding sensory pollutant footprints. We provide a step-by-step example for translating these results to on-the-ground conservation planning using two species as case studies.


Assuntos
Poluição Ambiental , Luz , Ruído , Vertebrados , Animais , Conservação dos Recursos Naturais , Ecossistema , Ruído/efeitos adversos
8.
Glob Chang Biol ; 27(17): 3987-4004, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34111313

RESUMO

The extent of artificial night light and anthropogenic noise (i.e., "light" and "noise") impacts is global and has the capacity to threaten species across diverse ecosystems. Existing research involving impacts of light or noise has primarily focused on noise or light alone and single species; however, these stimuli often co-occur and little is known about how co-exposure influences wildlife and if and why species may vary in their responses. Here, we had three aims: (1) to investigate species-specific responses to light, noise, and the interaction between the two using a spatially explicit approach to model changes in abundance of 140 prevalent bird species across North America, (2) to investigate responses to the interaction between light exposure and night length, and (3) to identify functional traits and habitat affiliations that explain variation in species-specific responses to these sensory stimuli with phylogenetically informed models. We found species that responded to noise exposure generally decreased in abundance, and the additional presence of light interacted synergistically with noise to exacerbate its negative effects. Moreover, the interaction revealed negative emergent responses for several species that only reacted when light and noise co-occurred. Additionally, an interaction between light and night length revealed 47 species increased in abundance with light exposure during longer nights. In addition to modifying behavior with optimal temperature and potential foraging opportunities, birds might be attracted to light, yet suffer inadvertent physiological consequences. The trait that most strongly related to avian response to light and noise was habitat affiliation. Specifically, species that occupy closed habitat were less tolerant of both sensory stressors compared to those that occupy open habitat. Further quantifying the contexts and intrinsic traits that explain how species respond to noise and light will be fundamental to understanding the ecological consequences of a world that is ever louder and brighter.


Assuntos
Aves , Ecossistema , Animais , Animais Selvagens , Ruído/efeitos adversos , Especificidade da Espécie
9.
Proc Biol Sci ; 288(1948): 20202906, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33849312

RESUMO

Noise pollution can affect species' behaviours and distributions and may hold significant consequences for natural communities. While several studies have researched short-term effects of noise, no long-term research has examined whether observed patterns persist or if community recovery can occur. We used a long-term study system in New Mexico to examine the effects of continuous natural gas well noise exposure on seedling recruitment of foundational tree species (Pinus edulis, Juniperus osteosperma) and vegetation diversity. First, we examined seedling recruitment and vegetation diversity at plots where current noise levels have persisted for greater than 15 years. We then examined recruitment and diversity on plots where noise sources were recently removed or added. We found support for long-term negative effects of noise on tree seedling recruitment, evenness of woody plants and increasingly dissimilar vegetation communities with differences in noise levels. Furthermore, seedling recruitment and plant community composition did not recover following noise removal, possibly due in part to a lag in recovery among animals that disperse and pollinate plants. Our results add to the limited evidence that noise has cascading ecological effects. Moreover, these effects may be long lasting and noise removal may not lead to immediate recovery.


Assuntos
Juniperus , Plântula , Animais , Ecossistema , New Mexico , Ruído , Árvores
10.
Proc Biol Sci ; 288(1947): 20210253, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33757351

RESUMO

Emerging infectious diseases (EIDs) present global health threats, and their emergences are often linked to anthropogenic change. Artificial light at night (ALAN) is one form of anthropogenic change that spans beyond urban boundaries and may be relevant to EIDs through its influence on the behaviour and physiology of hosts and/or vectors. Although West Nile virus (WNV) emergence has been described as peri-urban, we hypothesized that exposure risk could also be influenced by ALAN in particular, which is testable by comparing the effects of ALAN on prevalence while controlling for other aspects of urbanization. By modelling WNV exposure among sentinel chickens in Florida, we found strong support for a nonlinear relationship between ALAN and WNV exposure risk in chickens with peak WNV risk occurring at low ALAN levels. Although our goal was not to discern how ALAN affected WNV relative to other factors, effects of ALAN on WNV exposure were stronger than other known drivers of risk (i.e. impervious surface, human population density). Ambient temperature in the month prior to sampling, but no other considered variables, strongly influenced WNV risk. These results indicate that ALAN may contribute to spatio-temporal changes in WNV risk, justifying future investigations of ALAN on other vector-borne parasites.


Assuntos
Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Galinhas , Poluição Ambiental , Florida/epidemiologia , Humanos , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterinária
11.
Evolution ; 75(5): 1003-1010, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33755201

RESUMO

Endocrine systems act as key intermediaries between organisms and their environments. This interaction leads to high variability in hormone levels, but we know little about the ecological factors that influence this variation within and across major vertebrate groups. We study this topic by assessing how various social and environmental dynamics influence testosterone levels across the entire vertebrate tree of life. Our analyses show that breeding season length and mating system are the strongest predictors of average testosterone concentrations, whereas breeding season length, environmental temperature, and variability in precipitation are the strongest predictors of within-population variation in testosterone. Principles from small-scale comparative studies that stress the importance of mating opportunity and competition on the evolution of species differences in testosterone levels, therefore, likely apply to the entire vertebrate lineage. Meanwhile, climatic factors associated with rainfall and ambient temperature appear to influence variability in plasma testosterone, within a given species. These results, therefore, reveal how unique suites of ecological factors differentially explain scales of variation in circulating testosterone across mammals, birds, reptiles, amphibians, and fishes.


Assuntos
Características de História de Vida , Testosterona/sangue , Vertebrados/fisiologia , Animais , Ecossistema , Chuva , Comportamento Sexual Animal , Temperatura
12.
Integr Comp Biol ; 61(3): 1122-1133, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-33724371

RESUMO

Artificial light at night (ALAN) functions as a novel environmental stimulus that has the potential to disrupt interactions among species. Despite recent efforts to explain nocturnal pollinators' responses to this stimulus, the likelihood and associated mechanisms of attraction toward artificial light and potential consequences on fitness for diurnal pollinators are still largely unclear. Here, we took advantage of the obligate mutualism between yucca moths (Tegeticula maculata maculata) and yucca plants (Hesperoyucca whipplei) to understand how direct light exposure and skyglow can influence a pairwise plant-pollinator interaction. To surmise whether adult moths exhibit positive phototaxis, we deployed a set of field-placed light towers during the peak of yucca flowering and compared the number of moths caught in traps between dark-controlled and light-treated trials. Adult moth abundance was much higher when light was present, which suggests that ALAN may alter this diurnal moth's activity patterns to expand their temporal niche into the night. To evaluate ALAN effects on yucca fruit set and moth larva recruitment, we measured skyglow exposure above yucca plants and direct light intensity from a second set of light towers. Both larva and fruit recruitment increased with skyglow, and fruit set also increased with direct lighting, but the relationship was weaker. Contrarily, larva recruitment did not change when exposed to a gradient of direct light, which may instead reflect effects of ALAN on moth physiology, such as disrupted female oviposition, or misdirecting behaviors essential to oviposition activity. Our results suggest that ALAN can positively influence the fitness of both plants and moths in this tightly co-evolved mutualism, but the benefits to each species may depend on whether night lighting is direct or indirect. Whether such effects and mechanisms could relate to susceptibility to the presence of ALAN on this or other plant-pollinator relationships will remain an important focus of future research.


Assuntos
Poluição Ambiental , Luz , Mariposas , Yucca , Animais , Frutas , Mariposas/efeitos da radiação , Fototaxia , Polinização , Simbiose , Yucca/efeitos da radiação
13.
Proc Biol Sci ; 287(1941): 20201811, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33323075

RESUMO

Spending time in nature is known to benefit human health and well-being, but evidence is mixed as to whether biodiversity or perceptions of biodiversity contribute to these benefits. Perhaps more importantly, little is known about the sensory modalities by which humans perceive biodiversity and obtain benefits from their interactions with nature. Here, we used a 'phantom birdsong chorus' consisting of hidden speakers to experimentally increase audible birdsong biodiversity during 'on' and 'off' (i.e. ambient conditions) blocks on two trails to study the role of audition in biodiversity perception and self-reported well-being among hikers. Hikers exposed to the phantom chorus reported higher levels of restorative effects compared to those that experienced ambient conditions on both trails; however, increased restorative effects were directly linked to the phantom chorus on one trail and indirectly linked to the phantom chorus on the other trail through perceptions of avian biodiversity. Our findings add to a growing body of evidence linking mental health to nature experiences and suggest that audition is an important modality by which natural environments confer restorative effects. Finally, our results suggest that maintaining or improving natural soundscapes within protected areas may be an important component to maximizing human experiences.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Saúde , Vocalização Animal , Animais , Aves , Ecossistema , Humanos , Aves Canoras
14.
Nature ; 587(7835): 605-609, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177710

RESUMO

Expansion of anthropogenic noise and night lighting across our planet1,2 is of increasing conservation concern3-6. Despite growing knowledge of physiological and behavioural responses to these stimuli from single-species and local-scale studies, whether these pollutants affect fitness is less clear, as is how and why species vary in their sensitivity to these anthropic stressors. Here we leverage a large citizen science dataset paired with high-resolution noise and light data from across the contiguous United States to assess how these stimuli affect reproductive success in 142 bird species. We find responses to both sensory pollutants linked to the functional traits and habitat affiliations of species. For example, overall nest success was negatively correlated with noise among birds in closed environments. Species-specific changes in reproductive timing and hatching success in response to noise exposure were explained by vocalization frequency, nesting location and diet. Additionally, increased light-gathering ability of species' eyes was associated with stronger advancements in reproductive timing in response to light exposure, potentially creating phenological mismatches7. Unexpectedly, better light-gathering ability was linked to reduced clutch failure and increased overall nest success in response to light exposure, raising important questions about how responses to sensory pollutants counteract or exacerbate responses to other aspects of global change, such as climate warming. These findings demonstrate that anthropogenic noise and light can substantially affect breeding bird phenology and fitness, and underscore the need to consider sensory pollutants alongside traditional dimensions of the environment that typically inform biodiversity conservation.


Assuntos
Aves/fisiologia , Iluminação/efeitos adversos , Ruído/efeitos adversos , Reprodução/efeitos da radiação , Animais , Aves/classificação , Ciência do Cidadão , Tamanho da Ninhada/efeitos da radiação , Espaços Confinados , Conjuntos de Dados como Assunto , Dieta/veterinária , Ecossistema , Feminino , Mapeamento Geográfico , Masculino , Comportamento de Nidação/fisiologia , Comportamento de Nidação/efeitos da radiação , Fenômenos Fisiológicos Oculares/efeitos da radiação , Reprodução/fisiologia , Especificidade da Espécie , Estados Unidos , Vocalização Animal/efeitos da radiação
15.
Proc Biol Sci ; 287(1923): 20200176, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32183626

RESUMO

Noise pollution is pervasive across every ecosystem on Earth. Although decades of research have documented a variety of negative impacts of noise to organisms, key gaps remain, such as how noise affects different taxa within a biological community and how effects of noise propagate across space. We experimentally applied traffic noise pollution to multiple roadless areas and quantified the impacts of noise on birds, grasshoppers and odonates. We show that acoustically oriented birds have reduced species richness and abundance and different community compositions in experimentally noise-exposed areas relative to comparable quiet locations. We also found both acoustically oriented grasshoppers and odonates without acoustic receptors to have reduced species richness and/or abundance in relatively quiet areas that abut noise-exposed areas. These results suggest that noise pollution not only affects acoustically oriented animals, but that noise may reverberate through biological communities through indirect effects to those with no clear links to the acoustic realm, even in adjacent quiet environments.


Assuntos
Ecossistema , Ruído , Animais , Biota , Aves , Meio Ambiente , Gafanhotos , Reprodução
16.
Nat Ecol Evol ; 4(4): 502-511, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32203474

RESUMO

Global expansion of human activities is associated with the introduction of novel stimuli, such as anthropogenic noise, artificial lights and chemical agents. Progress in documenting the ecological effects of sensory pollutants is weakened by sparse knowledge of the mechanisms underlying these effects. This severely limits our capacity to devise mitigation measures. Here, we integrate knowledge of animal sensory ecology, physiology and life history to articulate three perceptual mechanisms-masking, distracting and misleading-that clearly explain how and why anthropogenic sensory pollutants impact organisms. We then link these three mechanisms to ecological consequences and discuss their implications for conservation. We argue that this framework can reveal the presence of 'sensory danger zones', hotspots of conservation concern where sensory pollutants overlap in space and time with an organism's activity, and foster development of strategic interventions to mitigate the impact of sensory pollutants. Future research that applies this framework will provide critical insight to preserve the natural sensory world.


Assuntos
Ecologia , Ruído , Animais , Atividades Humanas , Humanos
17.
Conserv Physiol ; 8(1): coz110, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31993201

RESUMO

Rates of human-induced environmental change continue increasing with human population size, potentially altering animal physiology and negatively affecting wildlife. Researchers often use glucocorticoid concentrations (hormones that can be associated with stressors) to gauge the impact of anthropogenic factors (e.g. urbanization, noise and light pollution). Yet, no general relationships between human-induced environmental change and glucocorticoids have emerged. Given the number of recent studies reporting baseline and stress-induced corticosterone (the primary glucocorticoid in birds and reptiles) concentrations worldwide, it is now possible to conduct large-scale comparative analyses to test for general associations between disturbance and baseline and stress-induced corticosterone across species. Additionally, we can control for factors that may influence context, such as life history stage, environmental conditions and urban adaptability of a species. Here, we take a phylogenetically informed approach and use data from HormoneBase to test if baseline and stress-induced corticosterone are valid indicators of exposure to human footprint index, human population density, anthropogenic noise and artificial light at night in birds and reptiles. Our results show a negative relationship between anthropogenic noise and baseline corticosterone for birds characterized as urban avoiders. While our results potentially indicate that urban avoiders are more sensitive to noise than other species, overall our study suggests that the relationship between human-induced environmental change and corticosterone varies across species and contexts; we found no general relationship between human impacts and baseline and stress-induced corticosterone in birds, nor baseline corticosterone in reptiles. Therefore, it should not be assumed that high or low levels of exposure to human-induced environmental change are associated with high or low corticosterone levels, respectively, or that closely related species, or even individuals, will respond similarly. Moving forward, measuring alternative physiological traits alongside reproductive success, health and survival may provide context to better understand the potential negative effects of human-induced environmental change.

18.
R Soc Open Sci ; 6(9): 190867, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31598311

RESUMO

The soundscape serves as a backdrop for acoustic signals dispatched within and among species, spanning mate attraction to parasite host detection. Elevated background sound levels from human-made and natural sources may interfere with the reception of acoustic signals and alter species interactions and whole ecological communities. We investigated whether background noise influences the ability of the obligate parasitoid Ormia ochracea to locate its host, the variable field cricket (Gryllus lineaticeps). As O. ochracea use auditory cues to locate their hosts, we hypothesized that higher background noise levels would mask or distract flies from cricket calls and result in a decreased ability to detect and navigate to hosts. We used a field manipulation where fly traps baited with playback of male cricket advertisement calls were exposed to a gradient of experimental traffic and ocean surf noise. We found that increases in noise amplitude caused a significant decline in O. ochracea caught, suggesting that background noise can influence parasitoid-host interactions and potentially benefit hosts. As human-caused sensory pollution increases globally, soundscapes may influence the evolution of tightly co-evolved host-parasitoid relationships. Future work should investigate whether female cricket phonotaxis towards males is similarly affected by noise levels.

19.
Proc Biol Sci ; 286(1907): 20191332, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31337312

RESUMO

Reductions in animal body size over recent decades are often interpreted as an adaptive evolutionary response to climate warming. However, for reductions in size to reflect adaptive evolution, directional selection on body size within populations must have become negative, or where already negative, to have become more so, as temperatures increased. To test this hypothesis, we performed traditional and phylogenetic meta-analyses of the association between annual estimates of directional selection on body size from wild populations and annual mean temperatures from 39 longitudinal studies. We found no evidence that warmer environments were associated with selection for smaller size. Instead, selection consistently favoured larger individuals, and was invariant to temperature. These patterns were similar in ectotherms and endotherms. An analysis using year rather than temperature revealed similar patterns, suggesting no evidence that selection has changed over time, and also indicating that the lack of association with annual temperature was not an artefact of choosing an erroneous time window for aggregating the temperature data. Although phenotypic trends in size will be driven by a combination of genetic and environmental factors, our results suggest little evidence for a necessary ingredient-negative directional selection-for declines in body size to be considered an adaptive evolutionary response to changing selection pressures.


Assuntos
Tamanho Corporal/fisiologia , Temperatura Alta , Seleção Genética/fisiologia , Vertebrados/fisiologia , Animais , Tamanho Corporal/genética , Vertebrados/genética
20.
Am Nat ; 193(6): 866-880, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31094598

RESUMO

Glucocorticoid (GC) hormones are important phenotypic mediators across vertebrates, but their circulating concentrations can vary markedly. Here we investigate macroevolutionary patterning in GC levels across tetrapods by testing seven specific hypotheses about GC variation and evaluating whether the supported hypotheses reveal consistent patterns in GC evolution. If selection generally favors the "supportive" role of GCs in responding effectively to challenges, then baseline and/or stress-induced GCs may be higher in challenging contexts. Alternatively, if selection generally favors "protection" from GC-induced costs, GCs may be lower in environments where challenges are more common or severe. The predictors of baseline GCs were all consistent with supportive effects: levels were higher in smaller organisms and in those inhabiting more energetically demanding environments. During breeding, baseline GCs were also higher in populations and species with fewer lifetime opportunities to reproduce. The predictors of stress-induced GCs were instead more consistent with the protection hypothesis: during breeding, levels were lower in organisms with fewer lifetime reproductive opportunities. Overall, these patterns indicate a surprising degree of consistency in how some selective pressures shape GCs across broad taxonomic scales; at the same time, in challenging environments selection appears to operate on baseline and stress-induced GCs in distinct ways.


Assuntos
Evolução Biológica , Glucocorticoides/sangue , Seleção Genética , Estresse Fisiológico , Vertebrados/genética , Animais , Feminino , Masculino , Modelos Estatísticos , Vertebrados/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...