Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 13: 981, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31619952

RESUMO

This study aimed to evaluate the possible protective role of taurine on anxiety-like behavior, brain electrical activity and glial cell immunoreactivity in well-nourished and malnourished rats that were treated with a subconvulsing dose of pilocarpine. Newborn Wistar rats were subjected to normal or unfavorable lactation conditions, represented by the suckling of litters with 9 or 15 pups, resulting in well-nourished and malnourished animals, respectively. Each nutritional group was split into five subgroups that were treated from postnatal day (PND) 35 to 55 with 300 mg/kg/day of taurine + 45 mg/kg/day of pilocarpine (group T + P), taurine only (group T), pilocarpine only (group P), vehicle control (group V), or not treated control (group naïve; Nv). At PND56-58, the groups were subjected to the elevated plus-maze behavioral tests. Glycemia was measured on PND59. Between PND60 and PND65, the cortical spreading depression (CSD) was recorded in the cerebral cortex, and the levels of malondialdehyde and microglial and astrocyte immunoreactivity were evaluated in the cortex and hippocampus. Our data indicate that treatment with taurine and pilocarpine resulted in anxiolytic-like and anxiogenic behavior, respectively, and that nutritional deficiency modulated these effects. Both treatments decelerated CSD propagation and modulated GFAP- and Iba1-containing glial cells. Pilocarpine reduced body weight and glycemia, and administration of taurine was not able to attenuate the effects of pilocarpine. The molecular mechanisms underlying taurine action on behavioral and electrophysiological parameters in the normal and altered brain remain to be further explored.

2.
Front Neurosci ; 12: 897, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30559645

RESUMO

Epilepsy and malnutrition constitute two worldwide health problems affecting behavior and brain function. The cholinergic agonist pilocarpine (300-380 mg/kg; single administration) reproduces the human type of temporal lobe epilepsy in rats. Pilocarpine-induced epilepsy in rodents has been associated with glycemia, learning and memory and anxiety disturbances. Cortical spreading depression (CSD) is a neural response that has been linked to brain excitability disorders and its diseases, and has been shown to be antagonized by acute pilocarpine. This study aimed to further investigate the effect of chronic pilocarpine at a sub-convulsing dose on weight gain, blood glucose levels, anxiety-like behavior and CSD. In addition, we tested whether unfavorable lactation-induced malnutrition could modulate the pilocarpine effects. Wistar rats were suckled under normal size and large size litters (litters with 9 and 15 pups; groups L9 and L15, respectively). From postnatal days (PND) 35-55, these young animals received a daily intraperitoneal injection of pilocarpine (45 mg/kg/day), or vehicle (saline), or no treatment (naïve). On PND58, the animals were behaviorally tested in an open field apparatus. This was immediately followed by 6 h fasting and blood glucose measurement. At PND60-65, CSD was recorded, and its parameters (velocity of propagation, amplitude, and duration) were calculated. Compared to the control groups, pilocarpine-treated animals presented with reduced weight gain and lower glycemia, increased anxiety-like behavior and decelerated CSD propagation. CSD velocity was higher (p < 0.001) in the L15 groups in comparison to the corresponding groups in the L9 condition. The results demonstrate an influence of chronic (21-day) administration of a sub-convulsing, very low dose (45 mg/kg) of pilocarpine on CSD propagation, anxiety-like behavior, glycemia and body weight. Furthermore, data reinforce the hypothesis of a relationship between CSD and brain excitability. The lactation condition seems to differentially modulate these effects.

3.
Brain Res Bull ; 142: 414-421, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30232044

RESUMO

Ascorbic acid (AA) administration has been associated with neuroprotection against oxidative stress, although at high doses it can facilitate oxidation and acts like a proconvulsing drug. The pilocarpine-induced epilepsy model has been widely studied. However, less is known about the effects of sub-convulsive doses of pilocarpine on brain activity in immature animals under normal or deficient nutritional conditions. Herein, we investigated the effects of chronic pilocarpine administration in a sub-convulsive dose, with or without AA, on the excitability-related phenomenon denominated as cortical spreading depression (CSD) and levels of lipid peroxidation-induced malondialdehyde in well-nourished and malnourished rats. At postnatal days 7-28, rats received no gavage treatment (naïve group), saline (vehicle group), 45 mg/kg/d of pilocarpine and/or 120 mg/kg/d of AA. CSD propagation and malondialdehyde levels were analyzed at 34-40 days. The pilocarpine group presented with lower CSD velocities, while AA groups exhibited higher CSD velocities and augmented malondialdehyde levels compared with controls. The co-administration of AA partially antagonized the pilocarpine CSD effects, but did not revert it to control levels. Malnutrition increased CSD amplitude and velocity in comparison to the well-nourished condition. The electrocorticogram (ECoG) amplitude increased after CSD (ECoG potentiation) when compared with the baseline amplitude before CSD. However, no intergroup difference was observed in this CSD-related ECoG potentiation. The results support the hypothesis of a pilocarpine/ascorbic acid interaction in the immature rat brain and might help further the understanding of this interaction on neuronal electrical activity and oxidative stress.


Assuntos
Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Agonistas Muscarínicos/farmacologia , Pilocarpina/farmacologia , Animais , Encéfalo/fisiologia , Encéfalo/fisiopatologia , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Interações Medicamentosas , Eletrocorticografia , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/fisiologia , Masculino , Desnutrição/fisiopatologia , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Ratos Wistar
4.
Amino Acids ; 49(2): 337-346, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27873013

RESUMO

In mammals, L-glutamine (Gln) can alter the glutamate-Gln cycle and consequently brain excitability. Here, we investigated in developing rats the effect of treatment with different doses of Gln on anxiety-like behavior, cortical spreading depression (CSD), and microglial activation expressed as Iba1-immunoreactivity. Wistar rats were suckled in litters with 9 and 15 pups (groups L 9 and L 15; respectively, normal size- and large size litters). From postnatal days (P) 7-27, the animals received Gln per gavage (250, 500 or 750 mg/kg/day), or vehicle (water), or no treatment (naive). At P28 and P30, we tested the animals, respectively, in the elevated plus maze and open field. At P30-35, we measured CSD parameters (velocity of propagation, amplitude, and duration). Fixative-perfused brains were processed for microglial immunolabeling with anti-IBA-1 antibodies to analyze cortical microglia. Rats treated with Gln presented an anxiolytic behavior and accelerated CSD propagation when compared to the water- and naive control groups. Furthermore, CSD velocity was higher (p < 0.001) in the L 15 compared to the L 9 condition. Gln treatment increased Iba1 immunolabeling both in the parietal cortex and CA1 hippocampus, indicating microglial activation. The Gln effect was dose-dependent for anxiety-like behavior and CSD in both litter sizes, and for microglial activation in the L 15 groups. Besides confirming previous electrophysiological findings (CSD acceleration after Gln), our data demonstrate for the first time a behavioral and microglial activation that is associated with early Gln treatment in developing animals, and that is possibly operated via changes in brain excitability.


Assuntos
Ansiedade/tratamento farmacológico , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Glutamina/farmacologia , Microglia/imunologia , Animais , Animais Recém-Nascidos , Peso Corporal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glutamina/administração & dosagem , Tamanho da Ninhada de Vivíparos , Masculino , Microglia/efeitos dos fármacos , Ratos Wistar
5.
Amino Acids ; 47(11): 2437-45, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26123991

RESUMO

The amino acids taurine and alanine play a role in several physiological processes, including behavior and the electrical activity of the brain. In this study, we investigated the effect of treatment with taurine or alanine on anxiety-like behavior and the excitability-dependent phenomenon known as cortical spreading depression (CSD), using rats suckled in litters with 9 and 15 pups (groups L9 and L15). From postnatal days 7 to 27, the animals received per gavage 300 mg/kg/day of taurine or alanine or both. At 28 days, we tested the animals in the elevated plus maze, and at 33-35 days, we recorded CSD and analyzed its velocity of propagation, amplitude, and duration. Compared with water-treated controls, the L9 groups treated with taurine or alanine displayed anxiolytic behavior (higher number of entries in the open arms; p < 0.05), and reduced CSD velocity (p < 0.001). The effect of both amino acids on CSD was also found in the L15 groups and in five additional L9 groups (naïve, water, taurine, alanine, or both) treated at adulthood (90-110 days). The L15 condition resulted in smaller durations and higher CSD velocities compared with the L9 condition. Besides reinforcing previous evidence of behavioral modulation by taurine and alanine, our data are the first confirmation that treatment with these amino acids decelerates CSD regardless of lactation conditions (normal versus unfavorable lactation) or age at amino acid administration (young versus adult). The results suggest a modulating role for both amino acids on anxiety behavior and neuronal electrical activity.


Assuntos
Alanina/farmacologia , Ansiedade/metabolismo , Comportamento Animal/efeitos dos fármacos , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Tamanho da Ninhada de Vivíparos , Taurina/farmacologia , Animais , Animais Recém-Nascidos , Masculino , Ratos , Ratos Wistar
6.
Nutr Neurosci ; 16(4): 142-6, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23321157

RESUMO

OBJECTIVES: Malnutrition early in life can disrupt neurotransmitter systems in the brain, affecting its electrophysiological function. The opioid receptor antagonist naloxone can affect the electroencephalogram (EEG) and behavior in animals and humans, and patients under drug-abuse treatment use it as a therapy. The goal of this work in the rat is to determine whether malnutrition early in life modulates the action of naloxone on the excitability-related phenomenon known as cortical spreading depression (CSD). METHODS: Malnutrition was induced by feeding the dams during the gestation and lactation with a low-protein diet (8% protein). Their male pups received a single daily subcutaneous injection of naloxone (10 mg/kg/day) from the 7th to the 28th postnatal day, and were subsequently (30-40 days of life) submitted to a 4-hours CSD recording session, with electrodes at two points at a fixed distance apart on the parietal cortical surface. RESULTS: Compared to well-nourished rats receiving a 23% protein diet, malnourished animals displayed lower body weights and higher CSD velocities of propagation, confirming the facilitating effect of malnutrition on CSD. Naloxone treatment reduced in well-nourished rats the CSD propagation velocity, as compared to saline-injected controls. In contrast, the naloxone effect was less intense in the malnourished condition, and the CSD velocity difference between malnourished-naloxone and malnourished-saline groups did not reach statistical significance. DISCUSSION: Data strongly support the involvement of opioid-based mechanisms in excitability-related neural processes, which probably influence CSD propagation, and indicate that early malnutrition attenuates the impairing action of naloxone on CSD.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Desnutrição/fisiopatologia , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Animais , Animais Recém-Nascidos , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Dieta com Restrição de Proteínas , Eletroencefalografia , Fenômenos Eletrofisiológicos , Feminino , Lactação/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Desmame
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...