Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 41(2): 1284-93, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23222135

RESUMO

In all living cells, protein synthesis occurs on ribonucleoprotein particles called ribosomes. Molecular models have been reported for complete bacterial 70S and eukaryotic 80S ribosomes; however, only molecular models of large 50S subunits have been reported for archaea. Here, we present a complete molecular model for the Pyrococcus furiosus 70S ribosome based on a 6.6 Å cryo-electron microscopy map. Moreover, we have determined cryo-electron microscopy reconstructions of the Euryarchaeota Methanococcus igneus and Thermococcus kodakaraensis 70S ribosomes and Crenarchaeota Staphylothermus marinus 50S subunit. Examination of these structures reveals a surprising promiscuous behavior of archaeal ribosomal proteins: We observe intersubunit promiscuity of S24e and L8e (L7ae), the latter binding to the head of the small subunit, analogous to S12e in eukaryotes. Moreover, L8e and L14e exhibit intrasubunit promiscuity, being present in two copies per archaeal 50S subunit, with the additional binding site of L14e analogous to the related eukaryotic r-protein L27e. Collectively, these findings suggest insights into the evolution of eukaryotic ribosomal proteins through increased copy number and binding site promiscuity.


Assuntos
Proteínas Arqueais/química , Proteínas Ribossômicas/química , Ribossomos/química , Proteínas Arqueais/classificação , Sítios de Ligação , Microscopia Crioeletrônica , Desulfurococcaceae/química , Eucariotos/química , Euryarchaeota/química , Evolução Molecular , Modelos Moleculares , Pyrococcus furiosus/química , Proteínas Ribossômicas/classificação , Subunidades Ribossômicas Maiores de Arqueas/química
2.
Environ Microbiol ; 14(12): 3259-70, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23116209

RESUMO

Termite gut flagellates are colonized by host-specific lineages of ectosymbiotic and endosymbiotic bacteria. Previous studies have shown that flagellates of the genus Trichonympha may harbour more than one type of symbiont. Using a comprehensive approach that combined cloning of SSU rRNA genes with fluorescence in situ hybridization and electron microscopy, we investigated the phylogeny and subcellular locations of the symbionts in a variety of Trichonympha species from different termites. The flagellates in Trichonympha Cluster I were the only species associated with 'Endomicrobia', which were located in the posterior part of the cell, confirming previous results. Trichonympha species of Cluster II from the termite genus Incisitermes (family Kalotermitidae) lacked 'Endomicrobia' and were associated with endosymbiotic Actinobacteria, which is highly unusual. The endosymbionts, for which we suggest the name 'Candidatus Ancillula trichonymphae', represent a novel, deep-branching lineage in the Micrococcineae that consists exclusively of clones from termite guts. They preferentially colonized the anterior part of the flagellate host and were highly abundant in all species of Trichonympha Cluster II except Trichonympha globulosa. Here, they were outnumbered by a Desulfovibrio species associated with the cytoplasmic lamellae at the anterior cell pole. Such symbionts are present in both Trichonympha clusters, but not in all species. Unlike the intracellular location reported for the Desulfovibrio symbionts of Trichonympha agilis (Cluster I), the Desulfovibrio symbionts of T. globulosa (Cluster II) were situated in deep invaginations of the plasma membrane that were clearly connected to the exterior of the host cell.


Assuntos
Actinobacteria/classificação , Desulfovibrio/classificação , Trato Gastrointestinal/microbiologia , Hypermastigia/classificação , Isópteros/microbiologia , Simbiose , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Actinobacteria/ultraestrutura , Animais , Clonagem Molecular , Desulfovibrio/genética , Desulfovibrio/isolamento & purificação , Desulfovibrio/ultraestrutura , Genes de RNAr , Hypermastigia/isolamento & purificação , Hypermastigia/fisiologia , Hypermastigia/ultraestrutura , Filogenia , Especificidade da Espécie , Simbiose/genética
3.
Curr Opin Struct Biol ; 22(6): 786-96, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23031510

RESUMO

Ribosome recycling usually occurs after canonical termination triggered by a stop codon. Additionally, ribosomes that are stalled by aberrant mRNAs need to be recognized and subsequently recycled. In eukaryotes and archaea, the factors involved in canonical termination and ribosome rescue are structurally and functionally related. Both termination and ribosome rescue are mediated by class I release factors (eRF1/aRF1 in eukaryotic/archaeal termination) or their paralogs (Pelota/aPelota for ribosome rescue) and homologs of translational GTPases (eRF3/aEF1α in termination, Hbs1/aEF1α in ribosome rescue). These events are followed by recycling of the ribosome. Recently the ATPase ABCE1 was shown to be the main ribosome recycling factor. In concert with eRF1 or Pelota, ABCE1 dissociates the ribosome into subunits. During the past two years, several structures of ribosome rescue and ribosome recycling complexes have been solved by cryo-electron microscopy and crystallography. These structures along with recent functional data make it possible to propose a molecular model of these late translation events in termination and recycling.


Assuntos
Archaea/citologia , Eucariotos/citologia , Terminação Traducional da Cadeia Peptídica , Ribossomos/química , Ribossomos/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Archaea/genética , Archaea/metabolismo , Eucariotos/genética , Eucariotos/metabolismo , Humanos , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/metabolismo , Ribossomos/genética
4.
Proc Natl Acad Sci U S A ; 109(42): 16900-5, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-23027944

RESUMO

Ribosome protection proteins (RPPs) confer tetracycline resistance by binding to the ribosome and chasing the drug from its binding site. The current model for the mechanism of action of RPPs proposes that drug release is indirect and achieved via conformational changes within the drug-binding site induced upon binding of the RPP to the ribosome. Here we report a cryo-EM structure of the RPP TetM in complex with the 70S ribosome at 7.2-Å resolution. The structure reveals the contacts of TetM with the ribosome, including interaction between the conserved and functionally critical C-terminal extension of TetM and the decoding center of the small subunit. Moreover, we observe direct interaction between domain IV of TetM and the tetracycline binding site and identify residues critical for conferring tetracycline resistance. A model is presented whereby TetM directly dislodges tetracycline to confer resistance.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Enterococcus faecalis/genética , Escherichia coli/genética , Modelos Moleculares , Tetraciclina , Microscopia Crioeletrônica , Primers do DNA/genética , Processamento de Imagem Assistida por Computador , Mutagênese , Ribossomos/metabolismo
5.
Nature ; 482(7386): 501-6, 2012 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-22358840

RESUMO

Ribosome-driven protein biosynthesis is comprised of four phases: initiation, elongation, termination and recycling. In bacteria, ribosome recycling requires ribosome recycling factor and elongation factor G, and several structures of bacterial recycling complexes have been determined. In the eukaryotic and archaeal kingdoms, however, recycling involves the ABC-type ATPase ABCE1 and little is known about its structural basis. Here we present cryo-electron microscopy reconstructions of eukaryotic and archaeal ribosome recycling complexes containing ABCE1 and the termination factor paralogue Pelota. These structures reveal the overall binding mode of ABCE1 to be similar to canonical translation factors. Moreover, the iron-sulphur cluster domain of ABCE1 interacts with and stabilizes Pelota in a conformation that reaches towards the peptidyl transferase centre, thus explaining how ABCE1 may stimulate peptide-release activity of canonical termination factors. Using the mechanochemical properties of ABCE1, a conserved mechanism in archaea and eukaryotes is suggested that couples translation termination to recycling, and eventually to re-initiation.


Assuntos
Evolução Molecular , Pyrococcus furiosus/química , Ribossomos/química , Ribossomos/metabolismo , Saccharomyces cerevisiae/química , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Microscopia Crioeletrônica , Endorribonucleases/química , Endorribonucleases/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Modelos Moleculares , Movimento , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/metabolismo , Ligação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Pyrococcus furiosus/metabolismo , Ribossomos/ultraestrutura , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Proc Natl Acad Sci U S A ; 107(46): 19754-9, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-20974910

RESUMO

Protein synthesis in all living organisms occurs on ribonucleoprotein particles, called ribosomes. Despite the universality of this process, eukaryotic ribosomes are significantly larger in size than their bacterial counterparts due in part to the presence of 80 r proteins rather than 54 in bacteria. Using cryoelectron microscopy reconstructions of a translating plant (Triticum aestivum) 80S ribosome at 5.5-Å resolution, together with a 6.1-Å map of a translating Saccharomyces cerevisiae 80S ribosome, we have localized and modeled 74/80 (92.5%) of the ribosomal proteins, encompassing 12 archaeal/eukaryote-specific small subunit proteins as well as the complete complement of the ribosomal proteins of the eukaryotic large subunit. Near-complete atomic models of the 80S ribosome provide insights into the structure, function, and evolution of the eukaryotic translational apparatus.


Assuntos
Microscopia Crioeletrônica , Células Eucarióticas/metabolismo , Células Eucarióticas/ultraestrutura , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/ultraestrutura , Ribossomos/ultraestrutura , Evolução Molecular , Modelos Moleculares , Transporte Proteico , RNA Ribossômico/química , RNA Ribossômico/genética , RNA Ribossômico/ultraestrutura , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Especificidade da Espécie , Triticum/metabolismo
7.
Proc Natl Acad Sci U S A ; 107(46): 19748-53, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-20980660

RESUMO

Protein biosynthesis, the translation of the genetic code into polypeptides, occurs on ribonucleoprotein particles called ribosomes. Although X-ray structures of bacterial ribosomes are available, high-resolution structures of eukaryotic 80S ribosomes are lacking. Using cryoelectron microscopy and single-particle reconstruction, we have determined the structure of a translating plant (Triticum aestivum) 80S ribosome at 5.5-Šresolution. This map, together with a 6.1-Šmap of a Saccharomyces cerevisiae 80S ribosome, has enabled us to model ∼98% of the rRNA. Accurate assignment of the rRNA expansion segments (ES) and variable regions has revealed unique ES-ES and r-protein-ES interactions, providing insight into the structure and evolution of the eukaryotic ribosome.


Assuntos
Microscopia Crioeletrônica , Células Eucarióticas/ultraestrutura , Modelos Moleculares , Biossíntese de Proteínas , RNA Ribossômico/ultraestrutura , Ribossomos/química , Ribossomos/ultraestrutura , Cristalografia por Raios X , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Células Eucarióticas/metabolismo , Humanos , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Triticum/metabolismo , Triticum/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA