Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38779855

RESUMO

BACKGROUND: Analysis of vascular networks is an essential step to unravel the mechanisms regulating the physiological and pathological organization of blood vessels. So far, most of the analyses are performed using 2-dimensional projections of 3-dimensional (3D) networks, a strategy that has several obvious shortcomings. For instance, it does not capture the true geometry of the vasculature and generates artifacts on vessel connectivity. These limitations are accepted in the field because manual analysis of 3D vascular networks is a laborious and complex process that is often prohibitive for large volumes. METHODS: To overcome these issues, we developed 3DVascNet, a deep learning-based software for automated segmentation and quantification of 3D retinal vascular networks. 3DVascNet performs segmentation based on a deep learning model, and it quantifies vascular morphometric parameters such as vessel density, branch length, vessel radius, and branching point density. We tested the performance of 3DVascNet using a large data set of 3D microscopy images of mouse retinal blood vessels. RESULTS: We demonstrated that 3DVascNet efficiently segments vascular networks in 3D and that vascular morphometric parameters capture phenotypes detected by using manual segmentation and quantification in 2 dimension. In addition, we showed that, despite being trained on retinal images, 3DVascNet has high generalization capability and successfully segments images originating from other data sets and organs. CONCLUSIONS: Overall, we present 3DVascNet, a freely available software that includes a user-friendly graphical interface for researchers with no programming experience, which will greatly facilitate the ability to study vascular networks in 3D in health and disease. Moreover, the source code of 3DVascNet is publicly available, thus it can be easily extended for the analysis of other 3D vascular networks by other users.

2.
Biol Imaging ; 3: e4, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38487691

RESUMO

Drug discovery uses high throughput screening to identify compounds that interact with a molecular target or that alter a phenotype favorably. The cautious selection of molecules used for such a screening is instrumental and is tightly related to the hit rate. In this work, we wondered if cell painting, a general-purpose image-based assay, could be used as an efficient proxy for compound selection, thus increasing the success rate of a specific assay. To this end, we considered cell painting images with 30,000 molecules treatments, and selected compounds that produced a visual effect close to the positive control of an assay, by using the Frechet Inception Distance. We then compared the hit rates of such a preselection with what was actually obtained in real screening campaigns. As a result, cell painting would have permitted a significant increase in the success rate and, even for one of the assays, would have allowed to reach 80% of the hits with 10 times fewer compounds to test. We conclude that images of a cell painting assay can be directly used for compound selection prior to screening, and we provide a simple quantitative approach in order to do so.

3.
Life Sci Alliance ; 5(12)2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36220570

RESUMO

Adaptation to breathing is a critical step in lung function and it is crucial for organismal survival. Alveoli are the lung gas exchange units and their development, from late embryonic to early postnatal stages, requires feedbacks between multiple cell types. However, how the crosstalk between the alveolar cell types is modulated to anticipate lung adaptation to breathing is still unclear. Here, we uncovered a synchronous alternative splicing switch in multiple genes in the developing mouse lungs at the transition to birth, and we identified hnRNP A1, Cpeb4, and Elavl2/HuB as putative splicing regulators of this transition. Notably, we found that <i>Vegfa</i> switches from the <i>Vegfa</i> 164 isoform to the longer <i>Vegfa</i> 188 isoform exclusively in lung alveolar epithelial AT1 cells. Functional analysis revealed that VEGFA 188 (and not VEGFA 164) drives the specification of Car4-positive aerocytes, a subtype of alveolar endothelial cells specialized in gas exchanges. Our results reveal that the cell type-specific regulation of <i>Vegfa</i> alternative splicing just before birth modulates the epithelial-endothelial crosstalk in the developing alveoli to promote lung adaptation to breathing.


Assuntos
Processamento Alternativo , Células Endoteliais , Processamento Alternativo/genética , Animais , Células Endoteliais/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Pulmão/metabolismo , Camundongos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
4.
Dev Cell ; 57(19): 2321-2333.e9, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36220082

RESUMO

Blood-vessel formation generates unique vascular patterns in each individual. The principles governing the apparent stochasticity of this process remain to be elucidated. Using mathematical methods, we find that the transition between two fundamental vascular morphogenetic programs-sprouting angiogenesis and vascular remodeling-is established by a shift of collective front-to-rear polarity of endothelial cells in the mouse retina. We demonstrate that the competition between biochemical (VEGFA) and mechanical (blood-flow-induced shear stress) cues controls this collective polarity shift. Shear stress increases tension at focal adhesions overriding VEGFA-driven collective polarization, which relies on tension at adherens junctions. We propose that vascular morphogenetic cues compete to regulate individual cell polarity and migration through tension shifts that translates into tissue-level emergent behaviors, ultimately leading to uniquely organized vascular patterns.


Assuntos
Polaridade Celular , Células Endoteliais , Junções Aderentes/metabolismo , Animais , Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Células Endoteliais/metabolismo , Camundongos , Morfogênese , Retina/metabolismo
5.
Elife ; 112022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35787830

RESUMO

Trypanosoma congolense causes a syndrome of variable severity in animals in Africa. Cerebral trypanosomiasis is a severe form, but the mechanism underlying this severity remains unknown. We developed a mouse model of acute cerebral trypanosomiasis and characterized the cellular, behavioral, and physiological consequences of this infection. We show large parasite sequestration in the brain vasculature for long periods of time (up to 8 hr) and extensive neuropathology that associate with ICAM1-mediated recruitment and accumulation of T cells in the brain parenchyma. Antibody-mediated ICAM1 blocking and lymphocyte absence reduce parasite sequestration in the brain and prevent the onset of cerebral trypanosomiasis. Here, we establish a mouse model of acute cerebral trypanosomiasis and we propose a mechanism whereby parasite sequestration, host ICAM1, and CD4+ T cells play a pivotal role.


Assuntos
Parasitos , Trypanosoma congolense , Tripanossomíase Africana , Tripanossomíase , Animais , Modelos Animais de Doenças , Camundongos , Tripanossomíase Africana/parasitologia
6.
Nat Commun ; 13(1): 2763, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589708

RESUMO

Nuclear position is central to cell polarization, and its disruption is associated with various pathologies. The nucleus is moved away from the leading edge of migrating cells through its connection to moving dorsal actin cables, and the absence of connections to immobile ventral stress fibers. It is unclear how these asymmetric nucleo-cytoskeleton connections are established. Here, using an in vitro wound assay, we find that remodeling of endoplasmic reticulum (ER) impacts nuclear positioning through the formation of a barrier that shields immobile ventral stress fibers. The remodeling of ER and perinuclear ER accumulation is mediated by the ER shaping protein Climp-63. Furthermore, ectopic recruitment of the ER to stress fibers restores nuclear positioning in the absence of Climp-63. Our findings suggest that the ER mediates asymmetric nucleo-cytoskeleton connections to position the nucleus.


Assuntos
Actinas , Retículo Endoplasmático , Actinas/metabolismo , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Retículo Endoplasmático/metabolismo , Fibras de Estresse/metabolismo
7.
Nat Cardiovasc Res ; 1(12): 1156-1173, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37936984

RESUMO

Vascular endothelial (VE)-cadherin in endothelial adherens junctions is an essential component of the vascular barrier, critical for tissue homeostasis and implicated in diseases such as cancer and retinopathies. Inhibitors of Src cytoplasmic tyrosine kinase have been applied to suppress VE-cadherin tyrosine phosphorylation and prevent excessive leakage, edema and high interstitial pressure. Here we show that the Src-related Yes tyrosine kinase, rather than Src, is localized at endothelial cell (EC) junctions where it becomes activated in a flow-dependent manner. EC-specific Yes1 deletion suppresses VE-cadherin phosphorylation and arrests VE-cadherin at EC junctions. This is accompanied by loss of EC collective migration and exaggerated agonist-induced macromolecular leakage. Overexpression of Yes1 causes ectopic VE-cadherin phosphorylation, while vascular leakage is unaffected. In contrast, in EC-specific Src-deficiency, VE-cadherin internalization is maintained, and leakage is suppressed. In conclusion, Yes-mediated phosphorylation regulates constitutive VE-cadherin turnover, thereby maintaining endothelial junction plasticity and vascular integrity.

8.
Cell Rep ; 36(12): 109741, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34551286

RESUMO

Trypanosoma brucei is responsible for lethal diseases in humans and cattle in Sub-Saharan Africa. These extracellular parasites extravasate from the blood circulation into several tissues. The importance of the vasculature in tissue tropism is poorly understood. Using intravital imaging and bioluminescence, we observe that gonadal white adipose tissue and pancreas are the two main parasite reservoirs. We show that reservoir establishment happens before vascular permeability is compromised, suggesting that extravasation is an active mechanism. Blocking endothelial surface adhesion molecules (E-selectin, P-selectins, or ICAM2) significantly reduces extravascular parasite density in all organs and delays host lethality. Remarkably, blocking CD36 has a specific effect on adipose tissue tropism that is sufficient to delay lethality, suggesting that establishment of the adipose tissue reservoir is necessary for parasite virulence. This work demonstrates the importance of the vasculature in a T. brucei infection and identifies organ-specific adhesion molecules as key players for tissue tropism.


Assuntos
Antígenos CD/metabolismo , Moléculas de Adesão Celular/metabolismo , Selectina E/metabolismo , Selectina-P/metabolismo , Trypanosoma brucei brucei/patogenicidade , Tecido Adiposo Branco/parasitologia , Animais , Anticorpos/imunologia , Antígenos CD/imunologia , Antígenos CD36/metabolismo , Moléculas de Adesão Celular/imunologia , Selectina E/imunologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Selectina-P/imunologia , Pâncreas/parasitologia , Parasitemia/mortalidade , Parasitemia/patologia , Parasitemia/veterinária , Taxa de Sobrevida , Trypanosoma brucei brucei/fisiologia , Regulação para Cima , Virulência
9.
Circulation ; 144(10): 805-822, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34182767

RESUMO

BACKGROUND: Activin receptor-like kinase 1 (ALK1) is an endothelial transmembrane serine threonine kinase receptor for BMP family ligands that plays a critical role in cardiovascular development and pathology. Loss-of-function mutations in the ALK1 gene cause type 2 hereditary hemorrhagic telangiectasia, a devastating disorder that leads to arteriovenous malformations. Here, we show that ALK1 controls endothelial cell polarization against the direction of blood flow and flow-induced endothelial migration from veins through capillaries into arterioles. METHODS: Using Cre lines that recombine in different subsets of arterial, capillary-venous, or endothelial tip cells, we show that capillary-venous Alk1 deletion was sufficient to induce arteriovenous malformation formation in the postnatal retina. RESULTS: ALK1 deletion impaired capillary-venous endothelial cell polarization against the direction of blood flow in vivo and in vitro. Mechanistically, ALK1-deficient cells exhibited increased integrin signaling interaction with vascular endothelial growth factor receptor 2, which enhanced downstream YAP/TAZ nuclear translocation. Pharmacologic inhibition of integrin or YAP/TAZ signaling rescued flow migration coupling and prevented vascular malformations in Alk1-deficient mice. CONCLUSIONS: Our study reveals ALK1 as an essential driver of flow-induced endothelial cell migration and identifies loss of flow-migration coupling as a driver of arteriovenous malformation formation in hereditary hemorrhagic telangiectasia disease. Integrin-YAP/TAZ signaling blockers are new potential targets to prevent vascular malformations in patients with hereditary hemorrhagic telangiectasia.


Assuntos
Malformações Arteriovenosas , Células Endoteliais , Telangiectasia Hemorrágica Hereditária , Fator A de Crescimento do Endotélio Vascular , Animais , Humanos , Malformações Arteriovenosas/metabolismo , Movimento Celular/fisiologia , Células Endoteliais/metabolismo , Telangiectasia Hemorrágica Hereditária/mortalidade , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Malformações Vasculares/metabolismo , Camundongos
10.
PLoS Comput Biol ; 17(2): e1007715, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33539345

RESUMO

During developmental angiogenesis, endothelial cells respond to shear stress by migrating and remodelling the initially hyperbranched plexus, removing certain vessels whilst maintaining others. In this study, we argue that the key regulator of vessel preservation is cell decision behaviour at bifurcations. At flow-convergent bifurcations where migration paths diverge, cells must finely tune migration along both possible paths if the bifurcation is to persist. Experiments have demonstrated that disrupting the cells' ability to sense shear or the junction forces transmitted between cells impacts the preservation of bifurcations during the remodelling process. However, how these migratory cues integrate during cell decision making remains poorly understood. Therefore, we present the first agent-based model of endothelial cell flow-mediated migration suitable for interrogating the mechanisms behind bifurcation stability. The model simulates flow in a bifurcated vessel network composed of agents representing endothelial cells arranged into a lumen which migrate against flow. Upon approaching a bifurcation where more than one migration path exists, agents refer to a stochastic bifurcation rule which models the decision cells make as a combination of flow-based and collective-based migratory cues. With this rule, cells favour branches with relatively larger shear stress or cell number. We found that cells must integrate both cues nearly equally to maximise bifurcation stability. In simulations with stable bifurcations, we found competitive oscillations between flow and collective cues, and simulations that lost the bifurcation were unable to maintain these oscillations. The competition between these two cues is haemodynamic in origin, and demonstrates that a natural defence against bifurcation loss during remodelling exists: as vessel lumens narrow due to cell efflux, resistance to flow and shear stress increases, attracting new cells to enter and rescue the vessel from regression. Our work provides theoretical insight into the role of junction force transmission has in stabilising vasculature during remodelling and as an emergent mechanism to avoid functional shunting.


Assuntos
Modelos Cardiovasculares , Neovascularização Fisiológica , Remodelação Vascular/fisiologia , Animais , Vasos Sanguíneos/citologia , Vasos Sanguíneos/crescimento & desenvolvimento , Vasos Sanguíneos/fisiologia , Movimento Celular/fisiologia , Biologia Computacional , Simulação por Computador , Células Endoteliais/fisiologia , Hemodinâmica/fisiologia , Humanos , Estresse Mecânico , Análise de Sistemas
11.
Cell Rep Methods ; 1(5): 100068, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35474672

RESUMO

Advances in single-cell RNA sequencing have allowed for the identification of cellular subtypes on the basis of quantification of the number of transcripts in each cell. However, cells might also differ in the spatial distribution of molecules, including RNAs. Here, we present DypFISH, an approach to quantitatively investigate the subcellular localization of RNA and protein. We introduce a range of analytical techniques to interrogate single-molecule RNA fluorescence in situ hybridization (smFISH) data in combination with protein immunolabeling. DypFISH is suited to study patterns of clustering of molecules, the association of mRNA-protein subcellular localization with microtubule organizing center orientation, and interdependence of mRNA-protein spatial distributions. We showcase how our analytical tools can achieve biological insights by utilizing cell micropatterning to constrain cellular architecture, which leads to reduction in subcellular mRNA distribution variation, allowing for the characterization of their localization patterns. Furthermore, we show that our method can be applied to physiological systems such as skeletal muscle fibers.


Assuntos
Fibras Musculares Esqueléticas , RNA , RNA/genética , Hibridização in Situ Fluorescente/métodos , RNA Mensageiro/genética , Fibras Musculares Esqueléticas/metabolismo , Transporte Proteico
12.
Vasc Biol ; 2(1): H29-H43, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32935077

RESUMO

The vascular system is a hierarchically organized network of blood vessels that play crucial roles in embryogenesis, homeostasis and disease. Blood vessels are built by endothelial cells - the cells lining the interior of blood vessels - through a process named vascular morphogenesis. Endothelial cells react to different biomechanical signals in their environment by adjusting their behavior to: (1) invade, proliferate and fuse to form new vessels (angiogenesis); (2) remodel, regress and establish a hierarchy in the network (patterning); and (3) maintain network stability (quiescence). Each step involves the coordination of endothelial cell differentiation, proliferation, polarity, migration, rearrangements and shape changes to ensure network integrity and an efficient barrier between blood and tissues. In this review, we highlighted the relevance and the mechanisms involving endothelial cell migration during different steps of vascular morphogenesis. We further present evidence on how impaired endothelial cell dynamics can contribute to pathology.

13.
Circulation ; 142(7): 688-704, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32466671

RESUMO

BACKGROUND: Pericytes regulate vessel stabilization and function, and their loss is associated with diseases such as diabetic retinopathy or cancer. Despite their physiological importance, pericyte function and molecular regulation during angiogenesis remain poorly understood. METHODS: To decipher the transcriptomic programs of pericytes during angiogenesis, we crossed Pdgfrb(BAC)-CreERT2 mice into RiboTagflox/flox mice. Pericyte morphological changes were assessed in mural cell-specific R26-mTmG reporter mice, in which low doses of tamoxifen allowed labeling of single-cell pericytes at high resolution. To study the role of phosphoinositide 3-kinase (PI3K) signaling in pericyte biology during angiogenesis, we used genetic mouse models that allow selective inactivation of PI3Kα and PI3Kß isoforms and their negative regulator phosphate and tensin homolog deleted on chromosome 10 (PTEN) in mural cells. RESULTS: At the onset of angiogenesis, pericytes exhibit molecular traits of cell proliferation and activated PI3K signaling, whereas during vascular remodeling, pericytes upregulate genes involved in mature pericyte cell function, together with a remarkable decrease in PI3K signaling. Immature pericytes showed stellate shape and high proliferation, and mature pericytes were quiescent and elongated. Unexpectedly, we demonstrate that PI3Kß, but not PI3Kα, regulates pericyte proliferation and maturation during vessel formation. Genetic PI3Kß inactivation in pericytes triggered early pericyte maturation. Conversely, unleashing PI3K signaling by means of PTEN deletion delayed pericyte maturation. Pericyte maturation was necessary to undergo vessel remodeling during angiogenesis. CONCLUSIONS: Our results identify new molecular and morphological traits associated with pericyte maturation and uncover PI3Kß activity as a checkpoint to ensure appropriate vessel formation. In turn, our results may open new therapeutic opportunities to regulate angiogenesis in pathological processes through the manipulation of pericyte PI3Kß activity.


Assuntos
Neovascularização Fisiológica , Pericitos/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Remodelação Vascular , Animais , Camundongos , Camundongos Transgênicos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/genética
14.
Elife ; 92020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32073398

RESUMO

As the general population ages, more people are affected by eye diseases, such as retinopathies. It is therefore critical to improve imaging of eye disease mouse models. Here, we demonstrate that 1) rapid, quantitative 3D and 4D (time lapse) imaging of cellular and subcellular processes in the mouse eye is feasible, with and without tissue clearing, using light-sheet fluorescent microscopy (LSFM); 2) flat-mounting retinas for confocal microscopy significantly distorts tissue morphology, confirmed by quantitative correlative LSFM-Confocal imaging of vessels; 3) LSFM readily reveals new features of even well-studied eye disease mouse models, such as the oxygen-induced retinopathy (OIR) model, including a previously unappreciated 'knotted' morphology to pathological vascular tufts, abnormal cell motility and altered filopodia dynamics when live-imaged. We conclude that quantitative 3D/4D LSFM imaging and analysis has the potential to advance our understanding of the eye, in particular pathological, neurovascular, degenerative processes.


Eye diseases affect millions of people worldwide and can have devasting effects on people's lives. To find new treatments, scientists need to understand more about how these diseases arise and how they progress. This is challenging and progress has been held back by limitations in current techniques for looking at the eye. Currently, the most commonly used method is called confocal imaging, which is slow and distorts the tissue. Distortion happens because confocal imaging requires that thin slices of eye tissue from mice used in experiments are flattened on slides; this makes it hard to accurately visualize three-dimensional structures in the eye. New methods are emerging that may help. One promising method is called light-sheet fluorescent microscopy (or LSFM for short). This method captures three-dimensional images of the blood vessels and cells in the eye. It is much faster than confocal imaging and allows scientists to image tissues without slicing or flattening them. This could lead to more accurate three-dimensional images of eye disease. Now, Prahst et al. show that LSFM can quickly produce highly detailed, three-dimensional images of mouse retinas, from the smallest parts of cells to the entire eye. The technique also identified new features in a well-studied model of retina damage caused by excessive oxygen exposure in young mice. Previous studies of this model suggested the disease caused blood vessels in the eye to balloon, hinting that drugs that shrink blood vessels would help. But using LSFM, Prahst et al. revealed that these blood vessels actually take on a twisted and knotted shape. This suggests that treatments that untangle the vessels rather than shrink them are needed. The experiments show that LSFM is a valuable tool for studying eye diseases, that may help scientists learn more about how these diseases arise and develop. These new insights may one day lead to better tests and treatments for eye diseases.


Assuntos
Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Retina/fisiologia , Animais , Oftalmopatias/diagnóstico , Oftalmopatias/terapia , Imageamento Tridimensional/métodos , Camundongos , Vasos Retinianos/diagnóstico por imagem
15.
Elife ; 82019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31246175

RESUMO

Morphogenesis of hierarchical vascular networks depends on the integration of multiple biomechanical signals by endothelial cells, the cells lining the interior of blood vessels. Expansion of vascular networks arises through sprouting angiogenesis, a process involving extensive cell rearrangements and collective cell migration. Yet, the mechanisms controlling angiogenic collective behavior remain poorly understood. Here, we show this collective cell behavior is regulated by non-canonical Wnt signaling. We identify that Wnt5a specifically activates Cdc42 at cell junctions downstream of ROR2 to reinforce coupling between adherens junctions and the actin cytoskeleton. We show that Wnt5a signaling stabilizes vinculin binding to alpha-catenin, and abrogation of vinculin in vivo and in vitro leads to uncoordinated polarity and deficient sprouting angiogenesis in Mus musculus. Our findings highlight how non-canonical Wnt signaling coordinates collective cell behavior during vascular morphogenesis by fine-tuning junctional mechanocoupling between endothelial cells.


Assuntos
Movimento Celular , Células Endoteliais/fisiologia , Neovascularização Fisiológica , Via de Sinalização Wnt , Proteína Wnt-5a/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Camundongos , Ligação Proteica , Vinculina/metabolismo , alfa Catenina/metabolismo
16.
Genesis ; 57(6): e23299, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30990965

RESUMO

Cell migration is essential during development, regeneration, homeostasis, and disease. Depending on the microenvironment, cells use different mechanisms to migrate. Yet, all modes of migration require the establishment of an intracellular front-rear polarity axis for directional movement. Although front-rear polarity can be easily identified in in vitro conditions, its assessment in vivo by live-imaging is challenging due to tissue complexity and lack of reliable markers. Here, we describe a novel and unique double fluorescent reporter mouse line to study front-rear cell polarity in living tissues, called GNrep. This mouse line simultaneously labels Golgi complexes and nuclei allowing the assignment of a nucleus-to-Golgi axis to each cell, which functions as a readout for cell front-rear polarity. As a proof-of-principle, we validated the efficiency of the GNrep line using an endothelial-specific Cre mouse line. We show that the GNrep labels the nucleus and the Golgi apparatus of endothelial cells with very high efficiency and high specificity. Importantly, the features of fluorescent intensity and localization for both mCherry and eGFP fluorescent intensity and localization allow automated segmentation and assignment of polarity vectors in complex tissues, making GNrep a great tool to study cell behavior in large-scale automated analyses. Altogether, the GNrep mouse line, in combination with different Cre recombinase lines, is a novel and unique tool to study of front-rear polarity in mice, both in fixed tissues or in intravital live imaging. This new line will be instrumental to understand cell migration and polarity in development, homeostasis, and disease.


Assuntos
Polaridade Celular/fisiologia , Engenharia de Proteínas/métodos , Animais , Movimento Celular/fisiologia , Núcleo Celular/metabolismo , Polaridade Celular/genética , Células Endoteliais , Corantes Fluorescentes , Genes Reporter , Complexo de Golgi/metabolismo , Camundongos
17.
Cell Rep ; 26(5): 1227-1241.e6, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30699351

RESUMO

Calcineurin/NFAT signaling is active in endothelial cells and is proposed to be an essential component of the tumor angiogenic response. Here, we investigated the role of endothelial calcineurin signaling in vivo in physiological and pathological angiogenesis and tumor metastasis. We show that this pathway is dispensable for retinal and tumor angiogenesis, but it is implicated in vessel stabilization. While ablation of endothelial calcineurin does not affect the progression of primary tumors or tumor cell extravasation, it does potentiate the outgrowth of lung metastases. We identify Bmp2 as a downstream target of the calcineurin/NFAT pathway in lung endothelium, potently inhibiting cancer cell growth by stimulating differentiation. We reveal a dual role of calcineurin/NFAT signaling in vascular regression or stabilization and in the tissue-specific production of an angiocrine factor restraining cancer cell outgrowth. Our results suggest that, besides targeting the immune system, post-transplantation immunosuppressive therapy with calcineurin inhibitors directly targets the endothelium, contributing to aggressive cancer progression.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Calcineurina/metabolismo , Células Endoteliais/metabolismo , Transdução de Sinais , Animais , Animais Recém-Nascidos , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Pulmonares/secundário , Melanoma/patologia , Camundongos , Metástase Neoplásica , Micrometástase de Neoplasia , Neovascularização Patológica/metabolismo , Vasos Retinianos/metabolismo
18.
EMBO Rep ; 19(9)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30018153

RESUMO

Impaired cell polarity is a hallmark of diseased tissue. In the cardiovascular system, laminar blood flow induces endothelial planar cell polarity, represented by elongated cell shape and asymmetric distribution of intracellular organelles along the axis of blood flow. Disrupted endothelial planar polarity is considered to be pro-inflammatory, suggesting that the establishment of endothelial polarity elicits an anti-inflammatory response. However, a causative relationship between polarity and inflammatory responses has not been firmly established. Here, we find that a cell polarity protein, PAR-3, is an essential gatekeeper of GSK3ß activity in response to laminar blood flow. We show that flow-induced spatial distribution of PAR-3/aPKCλ and aPKCλ/GSK3ß complexes controls local GSK3ß activity and thereby regulates endothelial planar polarity. The spatial information for GSK3ß activation is essential for flow-dependent polarity to the flow axis, but is not necessary for flow-induced anti-inflammatory response. Our results shed light on a novel relationship between endothelial polarity and vascular homeostasis highlighting avenues for novel therapeutic strategies.


Assuntos
Moléculas de Adesão Celular/fisiologia , Proteínas de Ciclo Celular/fisiologia , Polaridade Celular/fisiologia , Endotélio Vascular/metabolismo , Inflamação/metabolismo , Proteínas de Membrana/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Aorta/fisiopatologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Proteínas do Citoesqueleto/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Homeostase/fisiologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/metabolismo , Proteína Quinase C/metabolismo , Fluxo Sanguíneo Regional , Proteínas Repressoras/metabolismo , Transdução de Sinais
19.
Biophys J ; 114(9): 2052-2058, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29742399

RESUMO

In this article, we present PolNet, an open-source software tool for the study of blood flow and cell-level biological activity during vessel morphogenesis. We provide an image acquisition, segmentation, and analysis protocol to quantify endothelial cell polarity in entire in vivo vascular networks. In combination, we use computational fluid dynamics to characterize the hemodynamics of the vascular networks under study. The tool enables, to our knowledge for the first time, a network-level analysis of polarity and flow for individual endothelial cells. To date, PolNet has proven invaluable for the study of endothelial cell polarization and migration during vascular patterning, as demonstrated by two recent publications. Additionally, the tool can be easily extended to correlate blood flow with other experimental observations at the cellular/molecular level. We release the source code of our tool under the Lesser General Public License.


Assuntos
Polaridade Celular , Hemodinâmica , Modelos Biológicos , Software , Remodelação Vascular
20.
Elife ; 72018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29400648

RESUMO

Formation of blood vessel networks by sprouting angiogenesis is critical for tissue growth, homeostasis and regeneration. How endothelial cells arise in adequate numbers and arrange suitably to shape functional vascular networks is poorly understood. Here we show that YAP/TAZ promote stretch-induced proliferation and rearrangements of endothelial cells whilst preventing bleeding in developing vessels. Mechanistically, YAP/TAZ increase the turnover of VE-Cadherin and the formation of junction associated intermediate lamellipodia, promoting both cell migration and barrier function maintenance. This is achieved in part by lowering BMP signalling. Consequently, the loss of YAP/TAZ in the mouse leads to stunted sprouting with local aggregation as well as scarcity of endothelial cells, branching irregularities and junction defects. Forced nuclear activity of TAZ instead drives hypersprouting and vascular hyperplasia. We propose a new model in which YAP/TAZ integrate mechanical signals with BMP signaling to maintain junctional compliance and integrity whilst balancing endothelial cell rearrangements in angiogenic vessels.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Junções Aderentes/metabolismo , Proliferação de Células , Células Endoteliais/fisiologia , Neovascularização Fisiológica , Fosfoproteínas/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Caderinas/metabolismo , Proteínas de Ciclo Celular , Movimento Celular , Camundongos , Transativadores , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...