Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 34(14): 3133-3151.e10, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38964319

RESUMO

The sense of touch is conferred by the conjoint function of somatosensory neurons and skin cells. These cells meet across a gap filled by a basal lamina, an ancient structure found in metazoans. Using Caenorhabditis elegans, we investigate the composition and ultrastructure of the extracellular matrix at the epidermis and touch receptor neuron (TRN) interface. We show that membrane-matrix complexes containing laminin, nidogen, and the MEC-4 mechano-electrical transduction channel reside at this interface and are central to proper touch sensation. Interestingly, the dimensions and spacing of these complexes correspond with the discontinuous beam-like extracellular matrix structures observed in serial-section transmission electron micrographs. These complexes fail to coalesce in touch-insensitive extracellular matrix mutants and in dissociated neurons. Loss of nidogen reduces the density of mechanoreceptor complexes and the amplitude of the touch-evoked currents they carry. Thus, neuron-epithelium cell interfaces are instrumental in mechanosensory complex assembly and function. Unlike the basal lamina ensheathing the pharynx and body wall muscle, nidogen recruitment to the puncta along TRNs is not dependent upon laminin binding. MEC-4, but not laminin or nidogen, is destabilized by point mutations in the C-terminal Kunitz domain of the extracellular matrix component, MEC-1. These findings imply that somatosensory neurons secrete proteins that actively repurpose the basal lamina to generate special-purpose mechanosensory complexes responsible for vibrotactile sensing.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Mecanorreceptores , Mecanotransdução Celular , Animais , Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Mecanorreceptores/metabolismo , Mecanorreceptores/fisiologia , Mecanotransdução Celular/fisiologia , Tato/fisiologia , Membrana Basal/metabolismo , Membrana Basal/fisiologia , Matriz Extracelular/metabolismo , Laminina/metabolismo , Glicoproteínas de Membrana , Proteínas de Membrana
2.
eNeuro ; 8(5)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34475223

RESUMO

Highlighted Research Paper: Tracking Mitochondrial Density and Positioning along a Growing Neuronal Process in Individual C. elegans Neuron Using a Long-Term Growth and Imaging Microfluidic Device by Sudip Mondal, Jyoti Dubey, Anjali Awasthi, Guruprasad Reddy Sure, Amruta Vasudevan, and Sandhya P. Koushika.


Assuntos
Caenorhabditis elegans , Microfluídica , Animais , Dispositivos Lab-On-A-Chip , Neuritos , Neurônios
3.
Physiol Rep ; 6(17): e13812, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30178608

RESUMO

Inflammation is known to alter nervous system function, but its effect on muscle spindle afferent mechanosensation and sensory integration in the spinal cord has not been well studied. We tested the hypothesis that systemic inflammation induced by an intraperitoneal injection of the endotoxin lipopolysaccharide (LPS; 7.5 × 105 endotoxin units/kg 18 h before experiment) would alter muscle spindle afferent mechanosensation and spinal cord excitability to Group Ia input in male and female adult C57Bl/6 mice. LPS injection caused a systemic immune response, evidenced by decreased white blood cell, monocyte, and lymphocyte concentrations in the blood, increased blood granulocyte concentration, and body weight loss. The immune response in both sexes was qualitatively similar. We used an in vitro muscle-nerve preparation to assay muscle spindle afferent response to stretch and vibration. LPS injection did not significantly change the response to stretch or vibration, with the exception of small decreases in the ability to entrain to high-frequency vibration in male mice. Similarly, LPS injection did not alter spinal cord excitability to Group Ia muscle spindle afferent input as measured by the Hoffman's reflex test in anesthetized mice (100 mg/kg ketamine, 10 mg/kg xylazine). Specifically, there were no changes in M or H wave latencies nor in the percentage of motor neurons excited by electrical afferent stimulation (Hmax /Mmax ). Overall, we found no major alterations in muscle proprioceptor function or sensory integration following exposure to LPS at a dose and time course that causes changes in nociceptor function and central processing.


Assuntos
Mecanotransdução Celular , Fusos Musculares/fisiologia , Neurônios Aferentes/fisiologia , Medula Espinal/fisiologia , Animais , Feminino , Reflexo H , Inflamação , Lipopolissacarídeos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Motores/imunologia , Neurônios Motores/fisiologia , Fusos Musculares/imunologia , Neurônios Aferentes/imunologia , Propriocepção , Medula Espinal/imunologia , Vibração
4.
J Vis Exp ; (91): 51948, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25285602

RESUMO

Muscle sensory neurons innervating muscle spindles and Golgi tendon organs encode length and force changes essential to proprioception. Additional afferent fibers monitor other characteristics of the muscle environment, including metabolite buildup, temperature, and nociceptive stimuli. Overall, abnormal activation of sensory neurons can lead to movement disorders or chronic pain syndromes. We describe the isolation of the extensor digitorum longus (EDL) muscle and nerve for in vitro study of stretch-evoked afferent responses in the adult mouse. Sensory activity is recorded from the nerve with a suction electrode and individual afferents can be analyzed using spike sorting software. In vitro preparations allow for well controlled studies on sensory afferents without the potential confounds of anesthesia or altered muscle perfusion. Here we describe a protocol to identify and test the response of muscle spindle afferents to stretch. Importantly, this preparation also supports the study of other subtypes of muscle afferents, response properties following drug application and the incorporation of powerful genetic approaches and disease models in mice.


Assuntos
Músculo Esquelético/inervação , Junção Neuromuscular/fisiologia , Neurônios Aferentes/fisiologia , Potenciais de Ação/fisiologia , Vias Aferentes/fisiologia , Animais , Técnicas In Vitro , Camundongos , Fusos Musculares/inervação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA