Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 980514, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032174

RESUMO

Previous attempts to develop a vaccine against bovine leukemia virus (BLV) have not been successful because of inadequate or short-lived stimulation of all immunity components. In this study, we designed an approach based on an attenuated BLV provirus by deleting genes dispensable for infectivity but required for efficient replication. The ability of the vaccine to protect from natural BLV infection was investigated in the context of dairy productive conditions in an endemic region. The attenuated vaccine was tested in a farm in which the prevalence rose from 16.7% in young cattle at the beginning of the study to more than 90% in adult individuals. Sterilizing immunity was obtained in 28 out of 29 vaccinated heifers over a period of 48 months, demonstrating the effectiveness of the vaccine. As indicated by the antiviral antibody titers, the humoral response was slightly reduced compared to wild-type infection. After initial post-vaccination bursts, the proviral loads of the attenuated vaccine remained most frequently undetectable. During the first dairy cycle, proviral DNA was not detected by nested-PCR in milk samples from vaccinated cows. During the second dairy cycle, provirus was sporadically detected in milk of two vaccinated cows. Forty-two calves born from vaccinated cows were negative for proviral DNA but had antiviral antibodies in their peripheral blood. The attenuated strain was not transmitted to sentinels, further supporting the safety of the vaccine. Altogether, these data thus demonstrate that the vaccine against BLV is safe and effective in herd conditions characterized by a very high incidence. This cost-effective approach will thus decrease the prevalence of BLV without modification of production practices. After facing a series of challenges pertaining to effectiveness and biosafety, the vaccine is now available for further large-scale delivery. The different challenges and hurdles that were bypassed may be informative for the development of a vaccine against HTLV-1.


Assuntos
Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Animais , Antivirais , Bovinos , Feminino , Provírus , Vacinas Atenuadas
2.
J Vet Diagn Invest ; 32(6): 892-897, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32814516

RESUMO

Fetal bovine serum (FBS) used in cell culture may be contaminated with adventitious agents, which can affect the production of biologicals and the results of clinical laboratory tests. We carried out a retrospective study to determine the incidence of adventitious agent contamination of Argentinean irradiated FBS dating from 2015 to 2019. We analyzed FBS batches for mycoplasma and adventitious viruses (bovine pestiviruses, bovine adenovirus, bluetongue virus, bovine parainfluenza virus 3, rabies virus, bovine parvovirus, bovine herpesvirus 1, bovine respiratory syncytial virus, and reovirus). Cell passages followed by direct immunofluorescence were carried out to check viability of the mentioned adventitious agents. Also, molecular detection of mycoplasma and pestiviruses was performed on the FBS samples. The presence of neutralizing antibodies against pestiviruses was determined. Molecular analyses indicated that frequencies of mycoplasma and pestiviruses in FBS were 14% and 84%, respectively. All of the batches were seronegative for pestiviral antibodies. After cell passages, all FBS samples were negative for hemadsorbent agents and by immunofluorescence for all of the viral species analyzed; PCR assays were negative for mycoplasma and pestiviruses. Our results demonstrate that, of all adventitious agents tested, local FBS batches only had traces of mycoplasma and pestiviruses; gamma irradiation was effective in inactivating them.


Assuntos
Mycoplasma/isolamento & purificação , Soro/microbiologia , Soro/virologia , Vírus/isolamento & purificação , Animais , Anticorpos Antivirais/isolamento & purificação , Bovinos , Meios de Cultura , Reação em Cadeia da Polimerase/veterinária , Estudos Retrospectivos
3.
Retrovirology ; 16(1): 26, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31590667

RESUMO

Vaccination against retroviruses is a challenge because of their ability to stably integrate into the host genome, undergo long-term latency in a proportion of infected cells and thereby escape immune response. Since clearance of the virus is almost impossible once infection is established, the primary goal is to achieve sterilizing immunity. Besides efficacy, safety is the major issue since vaccination has been associated with increased infection or reversion to pathogenicity. In this review, we discuss the different issues that we faced during the development of an efficient vaccine against bovine leukemia virus (BLV). We summarize the historical failures of inactivated vaccines, the efficacy and safety of a live-attenuated vaccine and the economical constraints of further industrial development.


Assuntos
Leucose Enzoótica Bovina/prevenção & controle , Vírus da Leucemia Bovina/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/imunologia , Bovinos , Vacinação/veterinária , Vacinas Atenuadas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...