Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 35: 116085, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33668008

RESUMO

Histone deacetylases (HDACs) are a family of enzymes that modulate the acetylation status histones and non-histone proteins. Histone deacetylase inhibitors (HDACis) have emerged as an alternative therapeutic approach for the treatment of several malignancies. Herein, a series of urea-based cinnamyl hydroxamate derivatives is presented as potential anticancer HDACis. In addition, structure-activity relationship (SAR) studies have been performed in order to verify the influence of the linker on the biological profile of the compounds. All tested compounds demonstrated significant antiproliferative effects against solid and hematological human tumor cell lines. Among them, 11b exhibited nanomolar potency against hematological tumor cells including Jurkat and Namalwa, with IC50 values of 40 and 200 nM, respectively. Cellular and molecular proliferation studies, in presence of compounds 11a-d, showed significant cell growth arrest, apoptosis induction, and up to 43-fold selective cytotoxicity for leukemia cells versus non-tumorigenic cells. Moreover, compounds 11a-d increased acetylated α-tubulin expression levels, which is phenotypically consistent with HDAC inhibition, and indirectly induced DNA damage. In vitro enzymatic assays performed for 11b revealed a potent HDAC6 inhibitory activity (IC50: 8.1 nM) and 402-fold selectivity over HDAC1. Regarding SAR analysis, the distance between the hydroxamate moiety and the aromatic ring as well as the presence of the double bond in the cinnamyl linker were the most relevant chemical feature for the antiproliferative activity of the series. Molecular modeling studies suggest that cinnamyl hydroxamate is the best moiety of the series for binding HDAC6 catalytic pocket whereas exploration of Ser568 by the urea connecting unity (CU) might be related with the selectivity observed for the cinnamyl derivatives. In summary, cinnamyl hydroxamate derived compounds with HDAC6 inhibitory activity exhibited cell growth arrest and increased apoptosis, as well as selectivity to acute lymphoblastic leukemia cells. This study explores interesting compounds to fight against neoplastic hematological cells.


Assuntos
Antineoplásicos/farmacologia , Cinamatos/farmacologia , Histona Desacetilase 1/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cinamatos/síntese química , Cinamatos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Histona Desacetilase 1/metabolismo , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/química , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...