Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 3(9): 2598-2606, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-36134152

RESUMO

As crucial element in organic opto-electronic devices, heterostructures are of pivotal importance. In this context, a comprehensive study of the properties on a simplified model system of a donor-acceptor (D-A) bilayer structure is presented, using ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS), low-energy electron diffraction (LEED) and normal-incidence X-ray standing wave (NIXSW) measurements. Pentacene (PEN) as donor and perfluoropentacene (PFP) as acceptor material are chosen to produce bilayer structures on Au(111) and Cu(111) by sequential monolayer deposition of the two materials. By comparing the adsorption behavior of PEN/PFP bilayers on such weakly and strongly interacting substrates, it is found that: (i) the adsorption distance of the first layer (PEN or PFP) indicates physisorption on Au(111), (ii) the characteristics of the bilayer structure on Au(111) are (almost) independent of the deposition sequence, and hence, (iii) in both cases a mixed bilayer is formed on the Au substrate. This is in striking contrast to PFP/PEN bilayers on Cu(111), where strong chemisorption pins PEN molecules to the metal surface and no intermixing is induced by subsequent PFP deposition. The results illustrate the strong tendency of PEN and PFP molecules to mix, which has important implications for the fabrication of PEN/PFP heterojunctions.

2.
Beilstein J Nanotechnol ; 11: 1361-1370, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32974114

RESUMO

We studied the structural and electronic properties of 2,3,9,10-tetrafluoropentacene (F4PEN) on Ag(111) via X-ray standing waves (XSW), low-energy electron diffraction (LEED) as well as ultraviolet and X-ray photoelectron spectroscopy (UPS and XPS). XSW revealed that the adsorption distances of F4PEN in (sub)monolayers on Ag(111) were 3.00 Å for carbon atoms and 3.05 Å for fluorine atoms. The F4PEN monolayer was essentially lying on Ag(111), and multilayers adopted π-stacking. Our study shed light not only on the F4PEN-Ag(111) interface but also on the fundamental adsorption behavior of fluorinated pentacene derivatives on metals in the context of interface energetics and growth mode.

3.
Rep Prog Phys ; 83(6): 066501, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32101802

RESUMO

We review the binding and energy level alignment of π-conjugated systems on metals, a field which during the last two decades has seen tremendous progress both in terms of experimental characterization as well as in the depth of theoretical understanding. Precise measurements of vertical adsorption distances and the electronic structure together with ab initio calculations have shown that most of the molecular systems have to be considered as intermediate cases between weak physisorption and strong chemisorption. In this regime, the subtle interplay of different effects such as covalent bonding, charge transfer, electrostatic and van der Waals interactions yields a complex situation with different adsorption mechanisms. In order to establish a better understanding of the binding and the electronic level alignment of π-conjugated molecules on metals, we provide an up-to-date overview of the literature, explain the fundamental concepts as well as the experimental techniques and discuss typical case studies. Thereby, we relate the geometric with the electronic structure in a consistent picture and cover the entire range from weak to strong coupling.

4.
ACS Appl Mater Interfaces ; 12(12): 14542-14551, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32109044

RESUMO

Heteromolecular bilayers of π-conjugated organic molecules on metals, considered as model systems for more complex thin film heterostructures, are investigated with respect to their structural and electronic properties. By exploring the influence of the organic-metal interaction strength in bilayer systems, we determine the molecular arrangement in the physisorptive regime for copper-hexadecafluorophthalocyanine (F16CuPc) on Au(111) with intermediate layers of 5,7,12,14-pentacenetetrone and perylene-3,4,9,10-tetracarboxylic diimide. Using the X-ray standing wave technique to distinguish the different molecular layers, we show that these two bilayers are ordered following their deposition sequence. Surprisingly, F16CuPc as the second layer within the heterostructures exhibits an inverted intramolecular distortion compared to its monolayer structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...