Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 31(8): 2475-2493, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35152495

RESUMO

Mega-fires of unprecedented size, intensity and socio-economic impacts have surged globally due to climate change, fire suppression and development. Soil microbiomes are critical for post-fire plant regeneration and nutrient cycling, yet how mega-fires impact the soil microbiome remains unclear. We had a serendipitous opportunity to obtain pre- and post-fire soils from the same sampling locations after the 2016 Soberanes mega-fire burned with high severity throughout several of our established redwood-tanoak plots. This makes our study the first to examine microbial fire response in redwood-tanoak forests. We re-sampled soils immediately post-fire from two burned plots and one unburned plot to elucidate the effect of mega-fire on soil microbiomes. We used Illumina MiSeq sequencing of 16S and ITS1 sequences to determine that bacterial and fungal richness were reduced by 38%-70% in burned plots, with richness unchanged in the unburned plot. Fire altered composition by 27% for bacteria and 24% for fungi, whereas the unburned plots experienced no change in fungal and negligible change in bacterial composition. Pyrophilous taxa that responded positively to fire were phylogenetically conserved, suggesting shared evolutionary traits. For bacteria, fire selected for increased Firmicutes and Actinobacteria. For fungi, fire selected for the Ascomycota classes Pezizomycetes and Eurotiomycetes and for a Basidiomycota class of heat-resistant Geminibasidiomycete yeasts. We build from Grime's competitor-stress tolerator-ruderal (C-S-R) framework and its recent microbial applications to show how our results might fit into a trait-based conceptual model to help predict generalizable microbial responses to fire.


Assuntos
Ascomicetos , Incêndios , Sequoia , Bactérias/genética , Ecossistema , Florestas , Solo
2.
Ecology ; 99(10): 2217-2229, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30129261

RESUMO

Human-altered ecological disturbances may challenge system resilience and disrupt biological legacies maintaining ecosystem recovery. Yet, the extent to which novel regimes challenge these legacies varies. This may be partially explained by differences in the vulnerability of life history strategies to disturbance characteristics. In the fire-prone, resprouter-dominated coast redwood forests of California, the introduced disease sudden oak death (SOD) alters fuel profiles, fire behavior, and aboveground tree mortality; however, this system is dominated by resprouting trees that are well-adapted to aboveground damage, and belowground survival of individuals may represent the principal biological legacy connecting pre- and post-fire communities. Much of the research exploring altered disturbances and forest recovery has focused on legacies determined by seed dispersal and aboveground survival of adults. In this work, we use pre- and post-fire data from a long-term monitoring network to assess the impacts of novel disturbance interactions between wildfire and SOD on the belowground survival and vegetative reproduction of resprouters. We found that increasing accumulation of coarse woody surface fuels from SOD-killed hosts decreased the likelihood of belowground survival for resprouting tanoak trees, but not for redwoods. Tanoaks' belowground survival was negatively related to substrate burn severity, which increased with the volume of surface fuels from hosts, suggesting heat damage as a possible mechanism influencing altered patterns of resprouter mortality. These impacts increased with decreasing tree size. By contrast, redwood and tanoak trees that survived both disturbances resprouted more vigorously, regardless of post-fire infection by P. ramorum, and generated similar recruitment at the stand level. Our results demonstrate that disease-fire interactions can narrow recruitment filters for resprouters, which could impact long-term population and demographic structure; yet, compounded disturbance may also reduce stand density and disease pressure, allowing competitive release of survivors. Resprouters displayed vulnerabilities to altered disturbance, but our research suggests that legacies maintained by resprouting may be more resilient to certain compounded disturbances, compared to seed-obligate species, because of high rates of individual survival under increasingly severe events. These trends have important implications for conservation of declining tree species in SOD-impacted forests, as well as predictions of human impacts in other disturbance-prone systems where resprouters are present.


Assuntos
Incêndios , Árvores , California , Ecossistema , Florestas
3.
Ecology ; 94(10): 2152-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24358700

RESUMO

An under-examined component of global change is the alteration of disturbance regimes due to warming climates, continued species invasions, and accelerated land-use change. These drivers of global change are themselves novel ecosystem disturbances that may interact with historically occurring disturbances in complex ways. Here we use the natural experiment presented by wildfires in redwood forests impacted by an emerging infectious disease to demonstrate unexpected synergies of novel disturbance interactions. The dominant tree, coast redwood (fire resistant without negative disease impacts), experienced unexpected synergistic increases in mortality when fire and disease co-occurred. The increased mortality risk, more than fourfold at the peak of the effect, was not predictable from impacts of either disturbance alone. Changes in fire behavior associated with changes to forest fuels that occurred through disease progression overwhelmed redwood's usual resilience to wildfire. Our results demonstrate the potential for interacting disturbances to initiate novel successional trajectories and compromise ecosystem resilience.


Assuntos
Incêndios , Phytophthora/fisiologia , Doenças das Plantas , California , Sedimentos Geológicos
4.
New Phytol ; 196(4): 1145-1154, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23046069

RESUMO

The first wildfires in sudden oak death-impacted forests occurred in 2008 in the Big Sur region of California, creating the rare opportunity to study the interaction between an invasive forest pathogen and a historically recurring disturbance. To determine whether and how the sudden oak death pathogen, Phytophthora ramorum, survived the wildfires, we completed intensive vegetation-based surveys in forest plots that were known to be infested before the wildfires. We then used 24 plot-based variables as predictors of P. ramorum recovery following the wildfires. The likelihood of recovering P. ramorum from burned plots was lower than in unburned plots both 1 and 2 yr following the fires. Post-fire recovery of P. ramorum in burned plots was positively correlated with the number of pre-fire symptomatic California bay laurel (Umbellularia californica), the key sporulating host for this pathogen, and negatively correlated with post-fire bay laurel mortality levels. Patchy burn patterns that left green, P. ramorum-infected bay laurel amidst the charred landscape may have allowed these trees to serve as inoculum reservoirs that could lead to the infection of newly sprouting vegetation, further highlighting the importance of bay laurel in the sudden oak death disease cycle.


Assuntos
Phytophthora/fisiologia , Phytophthora/patogenicidade , Árvores , Umbellularia/microbiologia , California , Reservatórios de Doenças/microbiologia , Ecossistema , Incêndios , Espécies Introduzidas , Doenças das Plantas/microbiologia
5.
Ecol Appl ; 21(2): 313-20, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21563563

RESUMO

Sudden oak death (SOD) is an emerging forest disease causing extensive tree mortality in coastal California forests. Recent California wildfires provided an opportunity to test a major assumption underlying discussions of SOD and land management: SOD mortality will increase fire severity. We examined prefire fuels from host species in a forest monitoring plot network in Big Sur, California (USA), to understand the interactions between disease-caused mortality and wildfire severity during the 2008 Basin Complex wildfire. Detailed measurements of standing dead woody stems and downed woody debris 1-2 years prior to the Basin fire provided a rare picture of the increased fuels attributable to SOD mortality. Despite great differences in host fuel abundance, we found no significant difference in burn severity between infested and uninfested plots. Instead, the relationship between SOD and fire reflected the changing nature of the disease impacts over time. Increased SOD mortality contributed to overstory burn severity only in areas where the pathogen had recently invaded. Where longer-term disease establishment allowed dead material to fall and accumulate, increasing log volumes led to increased substrate burn severity. These patterns help inform forest management decisions regarding fire, both in Big Sur and in other areas of California as the pathogen continues to expand throughout coastal forests.


Assuntos
Ecossistema , Incêndios , Doenças das Plantas , Árvores , California
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...