Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Invest Dermatol ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38272206

RESUMO

Recessive dystrophic epidermolysis bullosa (RDEB) is a severely debilitating disorder caused by mutations in COL7A1 and is characterized by extreme skin fragility, chronic inflammation and fibrosis. A majority of RDEB patients develop squamous cell carcinoma (SCC), a highly aggressive skin cancer with limited treatment options currently available. In this study, we utilized an approach leveraging WGS and RNA-seq across three different tissues in a single RDEB patient to gain insight into possible mechanisms of RDEB-associated SCC progression and to identify potential therapeutic options. As a result, we identified PLK-1 as a possible candidate for targeted therapy and discovered microsatellite instability and accelerated aging as factors potentially contributing to the aggressive nature and early onset of RDEB SCC. By integrating multi-tissue genomic and transcriptomic analyses in a single patient, we demonstrate the promise of bridging the gap between genomic research and clinical applications for developing tailored therapies for patients with rare genetic disorders such as RDEB.

2.
STAR Protoc ; 4(3): 102503, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37669162

RESUMO

BCAM-positive basal limbal epithelial cells are an early transit-amplifying cell population (TAC) capable of holoclone formation and corneal epithelial differentiation. Here, we present a protocol for isolating BCAM-positive cells from human donor corneas by flow cytometry and cell sorting. We describe steps for cell dissection and dissociation, antibody staining, and flow cytometry. We then detail procedures for culturing the purified BCAM-positive and BCAM-negative cells for holoclone and cell sheet formation assays to study the factors that regulate corneal regeneration. For complete details on the use and execution of this protocol, please refer to Sasamoto et al.1.


Assuntos
Epitélio Corneano , Limbo da Córnea , Humanos , Citometria de Fluxo , Córnea , Células-Tronco , Sistema do Grupo Sanguíneo Lutheran , Moléculas de Adesão Celular
4.
Cells ; 12(13)2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37443766

RESUMO

The limbus, the vascularized junction between the cornea and conjunctiva, is thought to function as a barrier against corneal neovascularization. However, the exact mechanisms regulating this remain unknown. In this study, the limbal epithelial stem cell (LESC) marker ABCB5 was used to investigate the role of LESCs in corneal neovascularization. In an ABCB5KO model, a mild but significant increase of limbal lymphatic and blood vascular network complexity was observed in developing mice (4 weeks) but not in adult mice. Conversely, when using a cornea suture model, the WT animals exhibited a mild but significant increase in the number of lymphatic vessel sprouts compared to the ABCB5KO, suggesting a contextual anti-lymphangiogenic effect of ABCB5 on the limbal vasculature during development, but a pro-lymphangiogenic effect under inflammatory challenge in adulthood. In addition, conditioned media from ABCB5-positive cultured human limbal epithelial cells (ABCB5+) stimulated human blood and lymphatic endothelial cell proliferation and migration. Finally, a proteomic analysis demonstrated ABCB5+ cells have a pro(lymph)angiogenic as well as an anti-inflammatory profile. These data suggest a novel dual, context-dependent role of ABCB5+ LESCs, inhibiting developmental but promoting inflammatory (lymph)angiogenesis in adulthood and exerting anti-inflammatory effects. These findings are of high clinical relevance in relation to LESC therapy against blindness.


Assuntos
Neovascularização da Córnea , Ceratite , Limbo da Córnea , Adulto , Humanos , Animais , Camundongos , Neovascularização da Córnea/prevenção & controle , Proteômica , Limbo da Córnea/fisiologia , Células-Tronco/fisiologia , Inflamação , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética
5.
Cytotherapy ; 25(7): 782-788, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36868990

RESUMO

BACKGROUND AND AIMS: Recessive dystrophic epidermolysis bullosa (RDEB) is a hereditary, rare, devastating and life-threatening skin fragility disorder with a high unmet medical need. In a recent international, single-arm clinical trial, treatment of 16 patients (aged 6-36 years) with three intravenous infusions of 2 × 106 immunomodulatory ABCB5+ dermal mesenchymal stromal cells (MSCs)/kg on days 0, 17 and 35 reduced disease activity, itch and pain. A post-hoc analysis was undertaken to assess the potential effects of treatment with ABCB5+ MSCs on the overall skin wound healing in patients suffering from RDEB. METHODS: Documentary photographs of the affected body regions taken on days 0, 17, 35 and at 12 weeks were evaluated regarding proportion, temporal course and durability of wound closure as well as development of new wounds. RESULTS: Of 168 baseline wounds in 14 patients, 109 (64.9%) wounds had closed at week 12, of which 63.3% (69 wounds) had closed already by day 35 or day 17. Conversely, 74.2% of the baseline wounds that had closed by day 17 or day 35 remained closed until week 12. First-closure ratio within 12 weeks was 75.6%. The median rate of newly developing wounds decreased significantly (P = 0.001) by 79.3%. CONCLUSIONS: Comparison of the findings with published data from placebo arms and vehicle-treated wounds in controlled clinical trials suggests potential capability of ABCB5+ MSCs to facilitate wound closure, prolongate wound recurrence and decelerate formation of new wounds in RDEB. Beyond suggesting therapeutic efficacy for ABCB5+ MSCs, the analysis might stimulate researchers who develop therapies for RDEB and other skin fragility disorders to not only assess closure of preselected target wounds but pay attention to the patients' dynamic and diverse overall wound presentation as well as to the durability of achieved wound closure and the development of new wounds. TRIAL REGISTRATION: Clinicaltrials.gov NCT03529877; EudraCT 2018-001009-98.


Assuntos
Epidermólise Bolhosa Distrófica , Células-Tronco Mesenquimais , Humanos , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/terapia , Cicatrização/genética , Colágeno Tipo VII/metabolismo , Colágeno Tipo VII/farmacologia , Células-Tronco Mesenquimais/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP
6.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769164

RESUMO

Epigenetic DNA modification by 5-hydroxymethylcytosine (5hmC), generated by the Ten-eleven translocation (TET) dioxygenases, regulates diverse biological functions in many organ tissues, including the mammalian eye. For example, 5hmC has been shown to be involved in epigenetic regulation of retinal gene expression. However, a functional role of 5hmC in corneal differentiation has not been investigated to date. Here, we examined 5hmC and TET function in the human cornea. We found 5hmC highly expressed in MUC16-positive terminally differentiated cells that also co-expressed the 5hmC-generating enzyme TET2. TET2 knockdown (KD) in cultured corneal epithelial cells led to significant reductions of 5hmC peak distributions and resulted in transcriptional repression of molecular pathways involved in corneal differentiation, as evidenced by downregulation of MUC4, MUC16, and Keratin 12. Additionally, integrated TET2 KD RNA-seq and genome-wide Reduced Representation Hydroxymethylation Profiling revealed novel epigenetically regulated genes expressed by terminally differentiated cells, including KRT78, MYEOV, and MAL. In aggregate, our findings reveal a novel function of TET2 in the epigenetic regulation of corneal epithelial gene expression and identify novel TET2-controlled genes expressed in differentiated corneal epithelial cells. These results point to potential roles for TET2 induction strategies to enhance treatment of corneal diseases associated with abnormal epithelial maturation.


Assuntos
Dioxigenases , Epigênese Genética , Humanos , 5-Metilcitosina/metabolismo , Diferenciação Celular/genética , Córnea/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Mamíferos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo
7.
Stem Cell Res Ther ; 13(1): 455, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064604

RESUMO

BACKGROUND: While rapid healing of diabetic foot ulcers (DFUs) is highly desirable to avoid infections, amputations and life-threatening complications, DFUs often respond poorly to standard treatment. GMP-manufactured skin-derived ABCB5+ mesenchymal stem cells (MSCs) might provide a new adjunctive DFU treatment, based on their remarkable skin wound homing and engraftment potential, their ability to adaptively respond to inflammatory signals, and their wound healing-promoting efficacy in mouse wound models and human chronic venous ulcers. METHODS: The angiogenic potential of ABCB5+ MSCs was characterized with respect to angiogenic factor expression at the mRNA and protein level, in vitro endothelial trans-differentiation and tube formation potential, and perfusion-restoring capacity in a mouse hindlimb ischemia model. Finally, the efficacy and safety of ABCB5+ MSCs for topical adjunctive treatment of chronic, standard therapy-refractory, neuropathic plantar DFUs were assessed in an open-label single-arm clinical trial. RESULTS: Hypoxic incubation of ABCB5+ MSCs led to posttranslational stabilization of the hypoxia-inducible transcription factor 1α (HIF-1α) and upregulation of HIF-1α mRNA levels. HIF-1α pathway activation was accompanied by upregulation of vascular endothelial growth factor (VEGF) transcription and increase in VEGF protein secretion. Upon culture in growth factor-supplemented medium, ABCB5+ MSCs expressed the endothelial-lineage marker CD31, and after seeding on gel matrix, ABCB5+ MSCs demonstrated formation of capillary-like structures comparable with human umbilical vein endothelial cells. Intramuscularly injected ABCB5+ MSCs to mice with surgically induced hindlimb ischemia accelerated perfusion recovery as measured by laser Doppler blood perfusion imaging and enhanced capillary proliferation and vascularization in the ischemic muscles. Adjunctive topical application of ABCB5+ MSCs onto therapy-refractory DFUs elicited median wound surface area reductions from baseline of 59% (full analysis set, n = 23), 64% (per-protocol set, n = 20) and 67% (subgroup of responders, n = 17) at week 12, while no treatment-related adverse events were observed. CONCLUSIONS: The present observations identify GMP-manufactured ABCB5+ dermal MSCs as a potential, safe candidate for adjunctive therapy of otherwise incurable DFUs and justify the conduct of a larger, randomized controlled trial to validate the clinical efficacy. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03267784, Registered 30 August 2017, https://clinicaltrials.gov/ct2/show/NCT03267784.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Pé Diabético , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Neovascularização Fisiológica , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Derme/citologia , Derme/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Pé Diabético/genética , Pé Diabético/metabolismo , Pé Diabético/patologia , Pé Diabético/terapia , Humanos , Isquemia/metabolismo , Isquemia/terapia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica/fisiologia , RNA Mensageiro/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização/genética , Cicatrização/fisiologia
8.
Cell Rep ; 40(6): 111166, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35947947

RESUMO

The corneal epithelium is renowned for high regenerative potential, which is dependent on the coordinated function of its diverse progenitor subpopulations. However, the molecular pathways governing corneal epithelial progenitor differentiation are incompletely understood. Here, we identify a highly proliferative limbal epithelial progenitor subpopulation characterized by expression of basal cell adhesion molecule (BCAM) that is capable of holocone formation and corneal epithelial sheet generation. BCAM-positive cells can be found among ABCB5-positive limbal stem cells (LSCs) as well as among ABCB5-negative limbal epithelial cell populations. Mechanistically, we show that BCAM is functionally required for cellular migration and differentiation and that its expression is regulated by the transcription factor p63. In aggregate, our study identifies limbal BCAM expression as a marker of highly proliferative corneal epithelial progenitor cells and defines the role of BCAM as a critical molecular mediator of corneal epithelial differentiation.


Assuntos
Epitélio Corneano , Limbo da Córnea , Diferenciação Celular , Células Cultivadas , Córnea , Células Epiteliais/metabolismo , Limbo da Córnea/metabolismo , Células-Tronco/metabolismo
9.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613507

RESUMO

The ATP-binding cassette superfamily member ABCB5 identifies a subset of skin-resident mesenchymal stem cells (MSCs) that exhibit potent immunomodulatory and wound healing-promoting capacities along with superior homing ability. The ABCB5+ MSCs can be easily accessed from discarded skin samples, expanded, and delivered as a highly homogenous medicinal product with standardized potency. A range of preclinical studies has suggested therapeutic efficacy of ABCB5+ MSCs in a variety of currently uncurable skin and non-skin inflammatory diseases, which has been substantiated thus far by distinct clinical trials in chronic skin wounds or recessive dystrophic epidermolysis bullosa. Therefore, skin-derived ABCB5+ MSCs have the potential to provide a breakthrough at the forefront of MSC-based therapies striving to fulfill current unmet medical needs. The most recent milestones in this regard are the approval of a phase III pivotal trial of ABCB5+ MSCs for treatment of recessive dystrophic and junctional epidermolysis bullosa by the US Food and Drug Administration, and national market access of ABCB5+ MSCs (AMESANAR®) for therapy-refractory chronic venous ulcers under the national hospital exemption pathway in Germany.


Assuntos
Epidermólise Bolhosa Distrófica , Células-Tronco Mesenquimais , Estados Unidos , Humanos , Células-Tronco Mesenquimais/metabolismo , Epidermólise Bolhosa Distrófica/metabolismo , Alemanha , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo
10.
Ocul Surf ; 23: 197-200, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34653711

RESUMO

PURPOSE: Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV2). While the ocular surface is considered one of the major SARS-CoV2 transmission routes, the specific cellular tropism of SARS-CoV2 is not fully understood. In the current study, we evaluated the expression and regulation of two SARS-CoV2 viral entry proteins, TMPRSS2 and ACE2, in human ocular epithelial cells and stem cells. METHODS: TMPRSS2 and ACE2 expression in ABCB5-positive limbal stem cells (LSCs) were assessed by RNAseq, flow cytometry and immunohistochemistry. PAX6, TMPRSS2, and ACE2 mRNA expression values were obtained from the GSE135455 and DRA002960 RNA-seq datasets. siRNA-mediated PAX6 knockdown (KD) was performed in limbal and conjunctival epithelial cells. TMPRSS2 and ACE2 expression in the PAX6 KD cells was analyzed by qRT-PCR and Western blot. RESULTS: We found that ABCB5-positive LSCs express high levels of TMPRSS2 and ACE2 compared to ABCB5-negative limbal epithelial cells. Mechanistically, gene knockout and overexpression models revealed that the eye transcription factor PAX6 negatively regulates TMPRSS2 expression. Therefore, low levels of PAX6 in ABCB5-positive LSCs promote TMPRSS2 expression, and high levels of TMPRSS2 and ACE2 expression by LSCs indicate enhanced susceptibility to SARS-CoV2 infection in this stem cell population. CONCLUSIONS: Our study points to a need for COVID-19 testing of LSCs derived from donor corneas before transplantation to patients with limbal stem cell deficiency. Furthermore, our findings suggest that expandable human ABCB5+ LSC cultures might represent a relevant novel model system for studying cellular SARS-CoV2 viral entry mechanisms and evaluating related targeting strategies.


Assuntos
COVID-19 , RNA Viral , Subfamília B de Transportador de Cassetes de Ligação de ATP , Teste para COVID-19 , Humanos , SARS-CoV-2 , Células-Tronco , Proteínas Virais , Internalização do Vírus
11.
JID Innov ; 2(1)2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34870260

RESUMO

A significant number of chronic venous ulcers (CVUs) fail to heal despite of guideline-conform standard of care. Skin-derived ABCB5+ mesenchymal stem cells (MSCs) can dampen the sustained IL-1ß-driven inflammation present in chronic wounds. Based on their wound healing-facilitating effects in a mouse CVU model and an autologous first-in-human study, ABCB5+ MSCs have emerged as a potential candidate for cell-based advanced therapy of non-healing CVUs. In the present interventional, multicenter, single-arm, phase I/IIa clinical trial, subjects whose CVU had emerged as standard therapy-resistant received one or two topical applications of 1×106 allogeneic ABCB5+ MSCs/cm2 wound area in addition to standard treatment. Out of 83 treatment-emergent adverse events, only three were judged related to the cell product; they were mild or moderate and recovered without sequelae. Wound size markedly decreased from baseline to week 12, resulting in a median wound size reduction of 76% (full analysis set, N=31), 78% (per-protocol set, N=27) and 87% (subset of responders; n=21). In conclusion, the study treatment was well tolerated and safe. The treatment elicited a profound wound size reduction within 12 weeks, identifying ABCB5+ MSCs as a potential candidate for adjunctive therapy of otherwise incurable CVUs. These results justify the conduct of a larger, randomized, controlled trial to confirm clinical efficacy.

12.
J Invest Dermatol ; 142(6): 1725-1736.e10, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34808236

RESUMO

Severe angiopathy is a major driver for diabetes-associated secondary complications. Knowledge on the underlying mechanisms essential for advanced therapies to attenuate these pathologies is limited. Injection of ABCB5+ stromal precursors at the edge of nonhealing diabetic wounds in a murine db/db model, closely mirroring human type 2 diabetes, profoundly accelerates wound closure. Strikingly, enhanced angiogenesis was substantially enforced by the release of the ribonuclease angiogenin from ABCB5+ stromal precursors. This compensates for the profoundly reduced angiogenin expression in nontreated murine chronic diabetic wounds. Silencing of angiogenin in ABCB5+ stromal precursors before injection significantly reduced angiogenesis and delayed wound closure in diabetic db/db mice, implying an unprecedented key role for angiogenin in tissue regeneration in diabetes. These data hold significant promise for further refining stromal precursors-based therapies of nonhealing diabetic foot ulcers and other pathologies with impaired angiogenesis.


Assuntos
Diabetes Mellitus Tipo 2 , Pé Diabético , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Pé Diabético/patologia , Pé Diabético/terapia , Camundongos , Camundongos Endogâmicos , Neovascularização Patológica/patologia , Ribonuclease Pancreático , Cicatrização
13.
JCI Insight ; 6(22)2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34665781

RESUMO

BACKGROUNDRecessive dystrophic epidermolysis bullosa (RDEB) is a rare, devastating, and life-threatening inherited skin fragility disorder that comes about due to a lack of functional type VII collagen, for which no effective therapy exists. ABCB5+ dermal mesenchymal stem cells (ABCB5+ MSCs) possess immunomodulatory, inflammation-dampening, and tissue-healing capacities. In a Col7a1-/- mouse model of RDEB, treatment with ABCB5+ MSCs markedly extended the animals' lifespans.METHODSIn this international, multicentric, single-arm, phase I/IIa clinical trial, 16 patients (aged 4-36 years) enrolled into 4 age cohorts received 3 i.v. infusions of 2 × 106 ABCB5+ MSCs/kg on days 0, 17, and 35. Patients were followed up for 12 weeks regarding efficacy and 12 months regarding safety.RESULTSAt 12 weeks, statistically significant median (IQR) reductions in the Epidermolysis Bullosa Disease Activity and Scarring Index activity (EBDASI activity) score of 13.0% (2.9%-30%; P = 0.049) and the Instrument for Scoring Clinical Outcome of Research for Epidermolysis Bullosa clinician (iscorEB­c) score of 18.2% (1.9%-39.8%; P = 0.037) were observed. Reductions in itch and pain numerical rating scale scores were greatest on day 35, amounting to 37.5% (0.0%-42.9%; P = 0.033) and 25.0% (-8.4% to 46.4%; P = 0.168), respectively. Three adverse events were considered related to the cell product: 1 mild lymphadenopathy and 2 hypersensitivity reactions. The latter 2 were serious but resolved without sequelae shortly after withdrawal of treatment.CONCLUSIONThis trial demonstrates good tolerability, manageable safety, and potential efficacy of i.v. ABCB5+ MSCs as a readily available disease-modifying therapy for RDEB and provides a rationale for further clinical evaluation.TRIAL REGISTRATIONClinicaltrials.gov NCT03529877; EudraCT 2018-001009-98.FUNDINGThe trial was sponsored by RHEACELL GmbH & Co. KG. Contributions by NYF and MHF to this work were supported by the NIH/National Eye Institute (NEI) grants RO1EY025794 and R24EY028767.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Epidermólise Bolhosa Distrófica/terapia , Células-Tronco Mesenquimais/metabolismo , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Adulto Jovem
14.
iScience ; 24(6): 102688, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34195566

RESUMO

Human induced pluripotent stem cells (hiPSCs) can generate a multiplicity of organoids, yet no compelling evidence currently exists as to whether or not these contain tissue-specific, holoclone-forming stem cells. Here, we show that a subpopulation of cells in a hiPSC-derived corneal epithelial cell sheet is positive for ABCB5 (ATP-binding cassette, sub-family B, member 5), a functional marker of adult corneal epithelial stem cells. These cells possess remarkable holoclone-forming capabilities, which can be suppressed by an antibody-mediated ABCB5 blockade. The cell sheets are generated from ABCB5+ hiPSCs that first emerge in 2D eye-like organoids around six weeks of differentiation and display corneal epithelial immunostaining characteristics and gene expression patterns, including sustained expression of ABCB5. The findings highlight the translational potential of ABCB5-enriched, hiPSC-derived corneal epithelial cell sheets to recover vision in stem cell-deficient human eyes and represent the first report of holoclone-forming stem cells being directly identified in an hiPSC-derived organoid.

15.
Stem Cell Res Ther ; 12(1): 194, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741066

RESUMO

BACKGROUND: While therapeutic success of the limbal tissue or cell transplantation to treat severe cases of limbal stem cell (LSC) deficiency (LSCD) strongly depends on the percentage of LSCs within the transplanted cells, prospective LSC enrichment has been hampered by the intranuclear localization of the previously reported LSC marker p63. The recent identification of the ATP-binding cassette transporter ABCB5 as a plasma membrane-spanning marker of LSCs that are capable of restoring the cornea and the development of an antibody directed against an extracellular loop of the ABCB5 molecule stimulated us to develop a novel treatment strategy based on the utilization of in vitro expanded allogeneic ABCB5+ LSCs derived from human cadaveric limbal tissue. METHODS: We developed and validated a Good Manufacturing Practice- and European Pharmacopeia-conform production and quality-control process, by which ABCB5+ LSCs are derived from human corneal rims, expanded ex vivo, isolated as homogenous cell population, and manufactured as an advanced-therapy medicinal product (ATMP). This product was tested in a preclinical study program investigating the cells' engraftment potential, biodistribution behavior, and safety. RESULTS: ABCB5+ LSCs were reliably expanded and manufactured as an ATMP that contains comparably high percentages of cells expressing transcription factors critical for LSC stemness maintenance (p63) and corneal epithelial differentiation (PAX6). Preclinical studies confirmed local engraftment potential of the cells and gave no signals of toxicity and tumorgenicity. These findings were sufficient for the product to be approved by the German Paul Ehrlich Institute and the U.S. Food & Drug Administration to be tested in an international multicenter phase I/IIa clinical trial (NCT03549299) to evaluate the safety and therapeutic efficacy in patients with LSCD. CONCLUSION: Building upon these data in conjunction with the previously shown cornea-restoring capacity of human ABCB5+ LSCs in animal models of LSCD, we provide an advanced allogeneic LSC-based treatment strategy that shows promise for replenishment of the patient's LSC pool, recreation of a functional barrier against invading conjunctival cells and restoration of a transparent, avascular cornea.


Assuntos
Doenças da Córnea , Epitélio Corneano , Limbo da Córnea , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Doenças da Córnea/terapia , Epitélio Corneano/metabolismo , Humanos , Limbo da Córnea/metabolismo , Estudos Prospectivos , Células-Tronco/metabolismo , Distribuição Tecidual
16.
Stem Cells ; 39(7): 897-903, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33609408

RESUMO

Recessive dystrophic epidermolysis bullosa (RDEB) is a rare, incurable blistering skin disease caused by biallelic mutations in type VII collagen (C7). Advancements in treatment of RDEB have come from harnessing the immunomodulatory potential of mesenchymal stem cells (MSCs). Although human bone marrow-derived MSC (BM-MSC) trials in RDEB demonstrate improvement in clinical severity, the mechanisms of MSC migration to and persistence in injured skin and their contributions to wound healing are not completely understood. A unique subset of MSCs expressing ATP-binding cassette subfamily member 5 (ABCB5) resides in the reticular dermis and exhibits similar immunomodulatory characteristics to BM-MSCs. Our work aimed to test the hypothesis that skin-derived ABCB5+ dermal MSCs (DSCs) possess superior skin homing ability compared to BM-MSCs in immunodeficient NOD-scid IL2rgammanull (NSG) mice. Compared to BM-MSCs, peripherally injected ABCB5+ DSCs demonstrated superior homing and engraftment of wounds. Furthermore, ABCB5+ DSCs vs BM-MSCs cocultured with macrophages induced less anti-inflammatory interleukin-1 receptor antagonist (IL-1RA) production. RNA sequencing of ABCB5+ DSCs compared to BM-MSCs showed unique expression of major histocompatibility complex class II and Homeobox (Hox) genes, specifically HOXA3. Critical to inducing migration of endothelial and epithelial cells for wound repair, increased expression of HOXA3 may explain superior skin homing properties of ABCB5+ DSCs. Further discernment of the immunomodulatory mechanisms among MSC populations could have broader regenerative medicine implications beyond RDEB treatment.


Assuntos
Epidermólise Bolhosa Distrófica , Células-Tronco Mesenquimais , Subfamília B de Transportador de Cassetes de Ligação de ATP , Animais , Colágeno Tipo VII/genética , Colágeno Tipo VII/metabolismo , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/metabolismo , Epidermólise Bolhosa Distrófica/terapia , Proteínas de Homeodomínio/metabolismo , Imunomodulação , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Pele/metabolismo
17.
Gastroenterology ; 160(6): 1947-1960, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33617889

RESUMO

The cancer stem cell (CSC) concept emerged from the recognition of inherent tumor heterogeneity and suggests that within a given tumor, in analogy to normal tissues, there exists a cellular hierarchy composed of a minority of more primitive cells with enhanced longevity (ie, CSCs) that give rise to shorter-lived, more differentiated cells (ie, cancer bulk populations), which on their own are not capable of tumor perpetuation. CSCs can be responsible for cancer therapeutic resistance to conventional, targeted, and immunotherapeutic treatment modalities, and for cancer progression through CSC-intrinsic molecular mechanisms. The existence of CSCs in colorectal cancer (CRC) was first established through demonstration of enhanced clonogenicity and tumor-forming capacity of this cell subset in human-to-mouse tumor xenotransplantation experiments and subsequently confirmed through lineage-tracing studies in mice. Surface markers for CRC CSC identification and their prospective isolation are now established. Therefore, the application of single-cell omics technologies to CSC characterization, including whole-genome sequencing, RNA sequencing, and epigenetic analyses, opens unprecedented opportunities to discover novel targetable molecular pathways and hence to develop novel strategies for CRC eradication. We review recent advances in this field and discuss the potential implications of next-generation CSC analyses for currently approved and experimental targeted CRC therapies.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Biologia Computacional , Células-Tronco Neoplásicas , Animais , Antineoplásicos Imunológicos/uso terapêutico , Carcinogênese , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Biologia Computacional/métodos , Resistencia a Medicamentos Antineoplásicos , Genômica , Humanos , Imunoterapia , Terapia de Alvo Molecular , Análise de Célula Única
18.
Cytotherapy ; 23(2): 165-175, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33011075

RESUMO

BACKGROUND AIM: Mesenchymal stromal cells (MSCs) hold promise for the treatment of tissue damage and injury. However, MSCs comprise multiple subpopulations with diverse properties, which could explain inconsistent therapeutic outcomes seen among therapeutic attempts. Recently, the adenosine triphosphate-binding cassette transporter ABCB5 has been shown to identify a novel dermal immunomodulatory MSC subpopulation. METHODS: The authors have established a validated Good Manufacturing Practice (GMP)-compliant expansion and manufacturing process by which ABCB5+ MSCs can be isolated from skin tissue and processed to generate a highly functional homogeneous cell population manufactured as an advanced therapy medicinal product (ATMP). This product has been approved by the German competent regulatory authority to be tested in a clinical trial to treat therapy-resistant chronic venous ulcers. RESULTS: As of now, 12 wounds in nine patients have been treated with 5 × 105 autologous ABCB5+ MSCs per cm2 wound area, eliciting a median wound size reduction of 63% (range, 32-100%) at 12 weeks and early relief of pain. CONCLUSIONS: The authors describe here their GMP- and European Pharmacopoeia-compliant production and quality control process, report on a pre-clinical dose selection study and present the first in-human results. Together, these data substantiate the idea that ABCB5+ MSCs manufactured as ATMPs could deliver a clinically relevant wound closure strategy for patients with chronic therapy-resistant wounds.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Células-Tronco Mesenquimais , Humanos , Imunomodulação , Indústria Manufatureira , Controle de Qualidade , Pele
19.
Lab Invest ; 101(5): 636-647, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33299127

RESUMO

Activating transcription factor 3 (ATF-3), a cyclic AMP-dependent transcription factor, has been shown to play a regulatory role in melanoma, although its function during tumor progression remains unclear. Here, we demonstrate that ATF-3 exhibits tumor suppressive function in melanoma. Specifically, ATF-3 nuclear expression was significantly diminished with melanoma progression from nevi to primary to metastatic patient melanomas, correlating low expression with poor prognosis. Significantly low expression of ATF-3 was also found in cultured human metastatic melanoma cell lines. Importantly, overexpression of ATF-3 in metastatic melanoma cell lines significantly inhibited cell growth, migration, and invasion in vitro; as well as abrogated tumor growth in a human melanoma xenograft mouse model in vivo. RNA sequencing analysis revealed downregulation of ERK and AKT pathways and upregulation in apoptotic-related genes in ATF-3 overexpressed melanoma cell lines, which was further validated by Western-blot analysis. In summary, this study demonstrated that diminished ATF-3 expression is associated with melanoma virulence and thus provides a potential target for novel therapies and prognostic biomarker applications.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Melanoma/metabolismo , Animais , Apoptose , Feminino , Humanos , Sistema de Sinalização das MAP Quinases , Melanoma Experimental/metabolismo , Camundongos Nus , Proteína Oncogênica v-akt/metabolismo , Fosforilação , Estudos Retrospectivos
20.
J Biol Chem ; 295(22): 7774-7788, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32317280

RESUMO

Glioblastoma multiforme (GBM) is a malignant brain tumor with a poor prognosis resulting from tumor resistance to anticancer therapy and a high recurrence rate. Compelling evidence suggests that this is driven by subpopulations of cancer stem cells (CSCs) with tumor-initiating potential. ABC subfamily B member 5 (ABCB5) has been identified as a molecular marker for distinct subsets of chemoresistant tumor-initiating cell populations in diverse human malignancies. In the current study, we examined the potential role of ABCB5 in growth and chemoresistance of GBM. We found that ABCB5 is expressed in primary GBM tumors, in which its expression was significantly correlated with the CSC marker protein CD133 and with overall poor survival. Moreover, ABCB5 was also expressed by CD133-positive CSCs in the established human U-87 MG, LN-18, and LN-229 GBM cell lines. Antibody- or shRNA-mediated functional ABCB5 blockade inhibited proliferation and survival of GBM cells and sensitized them to temozolomide (TMZ)-induced apoptosis in vitro Likewise, in in vivo human GBM xenograft experiments with immunodeficient mice, mAb treatment inhibited growth of mutant TP53, WT PTEN LN-229 tumors, and sensitized LN-229 tumors to TMZ therapy. Mechanistically, we demonstrate that ABCB5 blockade inhibits TMZ-induced G2/M arrest and augments TMZ-mediated cell death. Our results identify ABCB5 as a GBM chemoresistance marker and point to the potential utility of targeting ABCB5 to improve current GBM therapies.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Anticorpos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Glioblastoma , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Proteínas de Neoplasias , RNA Interferente Pequeno , Temozolomida/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Camundongos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...