Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroscientist ; : 10738584241256277, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813891

RESUMO

Pioneering investigations in the mid-19th century revealed that the perception of tactile cues presented to the surface of the skin improves with training, which is referred to as tactile learning. Surprisingly, tactile learning also occurs for body parts and skin locations that are not physically involved in the training. For example, after training of a finger, tactile learning transfers to adjacent untrained fingers. This suggests that the transfer of tactile learning follows a somatotopic pattern and involves brain regions such as the primary somatosensory cortex (S1), in which the trained and untrained body parts and skin locations are represented close to each other. However, other results showed that transfer occurs between body parts that are not represented close to each other in S1-for example, between the hand and the foot. These and similar findings have led to the suggestion of additional cortical mechanisms to explain the transfer of tactile learning. Here, different mechanisms are reviewed, and the extent to which they can explain the transfer of tactile learning is discussed. What all of these mechanisms have in common is that they assume a representational or functional relationship between the trained and untrained body parts and skin locations. However, none of these mechanisms alone can explain the complex pattern of transfer results, and it is likely that different mechanisms interact to enable transfer, perhaps in concert with higher somatosensory and decision-making areas.

2.
Cereb Cortex ; 34(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38798001

RESUMO

It has remained unclear whether individuals with psychiatric disorders involving altered visual processing employ similar neuronal mechanisms during perceptual learning of a visual task. We investigated this question by training patients with body dysmorphic disorder, a psychiatric disorder characterized by distressing or impairing preoccupation with nonexistent or slight defects in one's physical appearance, and healthy controls on a visual detection task for human faces with low spatial frequency components. Brain activation during task performance was measured with functional magnetic resonance imaging before the beginning and after the end of behavioral training. Both groups of participants improved performance on the trained task to a similar extent. However, neuronal changes in the fusiform face area were substantially different between groups such that activation for low spatial frequency faces in the right fusiform face area increased after training in body dysmorphic disorder patients but decreased in controls. Moreover, functional connectivity between left and right fusiform face area decreased after training in patients but increased in controls. Our results indicate that neuronal mechanisms involved in perceptual learning of a face detection task differ fundamentally between body dysmorphic disorder patients and controls. Such different neuronal mechanisms in body dysmorphic disorder patients might reflect the brain's adaptations to altered functions imposed by the psychiatric disorder.


Assuntos
Transtornos Dismórficos Corporais , Aprendizagem , Imageamento por Ressonância Magnética , Humanos , Transtornos Dismórficos Corporais/fisiopatologia , Transtornos Dismórficos Corporais/psicologia , Transtornos Dismórficos Corporais/diagnóstico por imagem , Feminino , Adulto , Adulto Jovem , Masculino , Aprendizagem/fisiologia , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Estimulação Luminosa/métodos
3.
Orthopadie (Heidelb) ; 52(12): 968-980, 2023 Dec.
Artigo em Alemão | MEDLINE | ID: mdl-37828239

RESUMO

BACKGROUND: Implant loosening is the most common reason for revision surgery. OBJECTIVES: Contribution of modern cementing technique to the long-term stability of an implant. METHODS: Evaluation of the available evidence on modern cementing technique. RESULTS: Modern cementing technique in hip arthroplasty is considered established and leads to better cementing results. In knee arthroplasty, there are also specific recommendations, including intensive cleaning of the bone bed, mixing of bone cement under vacuum and application of bone cement to the implant and the bone. CONCLUSIONS: The use of modern cementing technique in hip and knee arthroplasty facilitates cementing, increases safety, and minimizes the risk of mechanical loosening.


Assuntos
Artroplastia do Joelho , Artroplastia de Substituição , Artroplastia do Joelho/métodos , Cimentos Ósseos/uso terapêutico , Cimentação/métodos , Reoperação
4.
STAR Protoc ; 4(3): 102493, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37572324

RESUMO

We present a protocol to conduct functional magnetic resonance spectroscopy (fMRS) in human participants before, during, and after training on a visual task. We describe steps for participant setup, volume-of-interest placement, fMRS measurement, and post-scan tests. We discuss the design, analysis, and interpretation of fMRS experiments. This protocol can be adapted to investigate the dynamics of chief excitatory and inhibitory neurotransmitters (glutamate and γ-aminobutyric acid, GABA, respectively) while participants perform or learn perceptual, motor, or cognitive tasks. For complete details on the use and execution of this protocol, please refer to Frank et al. (2022).1.


Assuntos
Ácido Glutâmico , Aprendizagem , Humanos , Espectroscopia de Ressonância Magnética/métodos , Ácido gama-Aminobutírico
5.
Sci Rep ; 13(1): 12362, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524748

RESUMO

The perception of coherent form configurations in natural scenes relies on the activity of early visual areas that respond to local orientation cues. Subsequently, high-level visual areas pool these local signals to construct a global representation of the initial visual input. However, it is still debated whether neurons in the early visual cortex respond also to global form features. Glass patterns (GPs) are visual stimuli employed to investigate local and global form processing and consist of randomly distributed dots pairs called dipoles arranged to form specific global configurations. In the current study, we used GPs and functional magnetic resonance imaging (fMRI) adaptation to reveal the visual areas that subserve the processing of oriented GPs. Specifically, we adapted participants to vertically oriented GP, then we presented test GPs having either the same or different orientations with respect to the adapting GP. We hypothesized that if local form features are processed exclusively by early visual areas and global form by higher-order visual areas, then the effect of visual adaptation should be more pronounced in higher tier visual areas as it requires global processing of the pattern. Contrary to this expectation, our results revealed that adaptation to GPs is robust in early visual areas (V1, V2, and V3), but not in higher tier visual areas (V3AB and V4v), suggesting that form cues in oriented GPs are primarily derived from local-processing mechanisms that originate in V1. Finally, adaptation to vertically oriented GPs causes a modification in the BOLD response within early visual areas, regardless of the relative orientations of the adapting and test stimuli, indicating a lack of orientation selectivity.


Assuntos
Imageamento por Ressonância Magnética , Córtex Visual , Humanos , Adaptação Fisiológica/fisiologia , Aclimatação , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiologia , Neurônios , Estimulação Luminosa/métodos
6.
Hum Brain Mapp ; 44(9): 3897-3912, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37126607

RESUMO

Learning and recognition can be improved by sorting novel items into categories and subcategories. Such hierarchical categorization is easy when it can be performed according to learned rules (e.g., "if car, then automatic or stick shift" or "if boat, then motor or sail"). Here, we present results showing that human participants acquire categorization rules for new visual hierarchies rapidly, and that, as they do, corresponding hierarchical representations of the categorized stimuli emerge in patterns of neural activation in the dorsal striatum and in posterior frontal and parietal cortex. Participants learned to categorize novel visual objects into a hierarchy with superordinate and subordinate levels based on the objects' shape features, without having been told the categorization rules for doing so. On each trial, participants were asked to report the category and subcategory of the object, after which they received feedback about the correctness of their categorization responses. Participants trained over the course of a one-hour-long session while their brain activation was measured using functional magnetic resonance imaging. Over the course of training, significant hierarchy learning took place as participants discovered the nested categorization rules, as evidenced by the occurrence of a learning trial, after which performance suddenly increased. This learning was associated with increased representational strength of the newly acquired hierarchical rules in a corticostriatal network including the posterior frontal and parietal cortex and the dorsal striatum. We also found evidence suggesting that reinforcement learning in the dorsal striatum contributed to hierarchical rule learning.


Assuntos
Mapeamento Encefálico , Lobo Parietal , Humanos , Mapeamento Encefálico/métodos , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiologia , Aprendizagem/fisiologia , Encéfalo/fisiologia , Reforço Psicológico , Imageamento por Ressonância Magnética
7.
J Neurophysiol ; 129(4): 948-962, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36988202

RESUMO

Self-motion perception involves an interaction between vestibular and visual brain regions. In the lateral brain, it includes the parietoinsular vestibular cortex and the posterior insular cortex. In the medial cortex, the cingulate sulcus visual (CSv) area is known to process visual-vestibular cues. Here, we show that the vestibular-visual network of the medial cortex extends beyond area CSv. We examined brain activations of 36 healthy right-handed participants by functional magnetic resonance imaging (fMRI) during stimulation with caloric vestibular, thermal, or visual motion cues. Consistent with previous research, we found that area CSv responded to both vestibular and visual cues but not to thermal cues. Moreover, the V6 complex and the precuneus motion (PcM) area responded primarily to (laminar-translational) visual motion cues. However, we also observed a region inferior to CSv within the pericallosal sulcus (vicinity of anterior retrosplenial) that primarily responded to vestibular cues. This vestibular pericallosal sulcus (vPCS) region did not respond to either visual or thermal cues. It was also distinct from a more posterior motion-sensitive region in the retrosplenial complex (mRSC) that responded to (radial) visual motion but not to vestibular and thermal cues. Together, our results suggest that the vestibular-visual network in the medial cortex not only includes areas CSv, PcM, and the V6 complex but also two additional brain regions adjacent to the callosum. These two brain regions exhibit similarities in terms of their locations and responses to vestibular and visual cues with self-motion-related brain regions recently described in nonhuman primates.NEW & NOTEWORTHY Self-motion perception involves several vestibular and visual cortical regions. Within the medial cortex, the cingulate sulcus visual (CSv) area, the precuneus motion (PcM) area, and the V6 complex respond selectively to self-motion cues. Here, we show that vestibular information is also processed in the pericallosal sulcus (vPCS), whereas (radial) visual motion information is associated with activation in the retrosplenial cortex (mRSC).


Assuntos
Mapeamento Encefálico , Percepção de Movimento , Humanos , Estimulação Luminosa/métodos , Encéfalo/fisiologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Giro do Cíngulo , Percepção de Movimento/fisiologia , Imageamento por Ressonância Magnética/métodos
8.
Orthopadie (Heidelb) ; 52(3): 178-185, 2023 Mar.
Artigo em Alemão | MEDLINE | ID: mdl-36749380

RESUMO

BACKGROUND: Surgical treatment of patients with osteoarthritis of the hip and persisting symptoms under conservative therapy has become increasingly important against the background of an aging population. OBJECTIVES: What are the physiological reactions in the interface between cementless implants and bone? METHODS: The literature is reviewed, expert opinions and animal models are analyzed and discussed. RESULTS: Surface coating of implants with hydroxyapatite or titanium can have positive effects on osteointegration. Additional local application of mediators might be beneficial for osteointegration in the future. CONCLUSION: Early peri-implant bone healing directly after implantation and late remodeling of the bone-implant interface are essential for secondary implant stability.


Assuntos
Materiais Revestidos Biocompatíveis , Osseointegração , Animais , Osseointegração/fisiologia , Próteses e Implantes , Osso e Ossos/cirurgia , Durapatita
9.
Front Physiol ; 14: 1285462, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162828

RESUMO

Purpose: Blood-Flow-Restriction (BFR) training provides the ability to achieve hypertrophy effects even though only light mechanical loads are applied. However, its impact on venous pressures and function are still unknown. Therefore, the present study investigates the influence of BFR-training on intravascular venous pressure and venous function in comparison to control exercises with low or high mechanical loads. Methods: In a randomized cross-over design, ten healthy men (27.6 ± 6.4 years) underwent three trials of unilateral knee-extensor exercise with three different training protocols, low-load- (LL-RT, 30% of the individual 1-repetition-maximum, 1RM), low-load BFR- (LL-BFR-RT, 30% 1RM, 50% limb occlusion pressure, LOP) and high-load resistance exercise (HL-RT, 75% 1RM). Exercise protocols contain about four sets of knee extension exercise (Range-of-Motion: 0-0-95°), separated by 60 s of rest. Each set was performed until volitional muscle failure. For analysis of changes in intravascular venous pressures and venous function, a venous catheter was placed at the exercising leg before each trial. Whereas venous pressures were recorded throughout the exercise trials, phlebodynamometric investigations were performed before and after each trial. Furthermore, subjective pain perception during and after exercise was accessed by visual analogue scale. One-way ANOVA was used to assess mean differences between training protocols, while two-way repeated-measures ANOVA (rANOVA; time x condition) was performed to compare changes in measures over time among conditions. Data were given as means ± standard deviation (SD). Results: In comparison to the exercise trials without venous occlusion, total workload was significantly lower in the LL-BFR-RT (LL-RT: 1745 ± 604 kg vs LL-BFR-RT: 1274 ± 237 kg vs HL-RT: 1847 ± 367 kg, p = 0.004) without indicating statistical differences in venous pressures during the exercise sets (interaction: p = 0.140) or pain perception (interaction: p = 0.574). Similarly, phlebodynamometric assessment of venous function (e.g. refill-time of the venous system pre-vs. post exercise trials-LL-RT: 29.7 ± 11.0 s vs 25.5 ± 9.6 s, LL-BFR-RT: 26.6 ± 13.0 s vs 27.3 ± 13.8 s, HL-RT: 25.9 ± 10.9 s vs 23.1 ± 8.2 s) revealed no time (p = 0.156), condition effect (p = 0.802) or their interactions (p = 0.382). Conclusion: The present study is the first one describing the acute effects of LL-BFR-RT to muscle failure on venous pressures and function in comparison to a LL- and HL-RT in the lower limbs. In contrast to the existing literature, LL-BFR-RT does not elevate the venous pressures during exercise higher than a comparative exercise without BFR and does not show any adverse effects on venous function after the exercise.

10.
bioRxiv ; 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38187719

RESUMO

It is generally believed that learning of a perceptual task involving low-level neuronal mechanisms is similar between individuals. However, it is unclear whether this assumption also applies to individuals with psychiatric disorders that are known to have altered brain activation during visual processing. We investigated this question in patients with body dysmorphic disorder (BDD), a psychiatric disorder characterized by distressing or impairing preoccupation with nonexistent or slight defects in one's physical appearance, and in healthy controls. Participants completed six training sessions on separate days on a visual detection task for human faces with low spatial frequency (LSF) components. Brain activation during task performance was measured with functional magnetic resonance imaging (fMRI) on separate days prior to and after training. The behavioral results showed that both groups of participants improved on the visual detection task to a similar extent through training. Despite this similarity in behavioral improvement, neuronal changes in the Fusiform Face Area (FFA), a core cortical region involved in face processing, with training were substantially different between groups. First, activation in the right FFA for LSF faces relative to High Spatial Frequency (HSF) faces that were used as an untrained control increased after training in BDD patients but decreased in controls. Second, resting state functional connectivity between left and right FFAs decreased after training in BDD patients but increased in controls. Contrary to the assumption that learning of a perceptual task is subserved by the same neuronal mechanisms across individuals, our results indicate that the neuronal mechanisms involved in learning of a face detection task differ fundamentally between patients with BDD and healthy individuals. The involvement of different neuronal mechanisms for learning of even simple perceptual tasks in patients with BDD might reflect the brain's adaptations to altered functions imposed by the psychiatric disorder.

11.
Curr Biol ; 32(23): 5022-5030.e7, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36384138

RESUMO

It is generally thought that children learn more efficiently than adults. One way to accomplish this is to have learning rapidly stabilized such that it is not interfered with by subsequent learning. Although γ-aminobutyric acid (GABA) plays an important role in stabilization, it has been reported that GABAergic inhibitory processing is not fully matured yet in children compared with adults. Does this finding indicate that more efficient learning in children is not due to more rapid stabilization? Here, we measured the concentration of GABA in early visual cortical areas in a time-resolved fashion before, during, and after visual perceptual learning (VPL) within subjects using functional MRS (fMRS) and then compared the concentrations between children (8 to 11 years old) and adults (18 to 35 years old). We found that children exhibited a rapid boost of GABA during visual training that persisted after training ended, whereas the concentration of GABA in adults remained unchanged. Moreover, behavioral experiments showed that children exhibited rapid development of resilience to retrograde interference, which indicates that children stabilize VPL much faster than adults. These results together suggest that inhibitory processing in children's brains is more dynamic and adapts more quickly to stabilize learning than in adults, making learning more efficient in children.


Assuntos
Aprendizagem , Córtex Visual , Ácido gama-Aminobutírico , Adolescente , Adulto , Criança , Humanos , Adulto Jovem , Ácido gama-Aminobutírico/fisiologia , Córtex Visual/fisiologia
12.
Antibiotics (Basel) ; 11(9)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36140023

RESUMO

We sought to analyze trends of the causative pathogens and their antibiotic susceptibility patterns in patients with periprosthetic joint infections (PJI) of the hip and knee to get better insights and improve treatment. Retrospective evaluation of all consecutive patients with microbiological detection of a causative pathogen at a tertiary endoprothetic referral center between January 2016 and December 2021 in Germany was performed. Overall, 612 different microorganisms could be detected in 493 patients (hip: n = 293; knee: n = 200). Evaluation did not show a change in the relative abundance of pathogens detected, with coagulase-negative staphylococci (n = 275; 44.9%) found frequently, followed by S. aureus (n = 86; 14.1%), Enterococcus species (n = 57; 9.3%), Streptococcus species (n = 48; 7.8%), and Gram-negative bacteria (n = 80; 13.1%). Evaluation of the antibiotic susceptibilities showed increasing rates of oxacillin-resistant coagulase-negative staphylococci (60.4%; 46.8−76.7%) and piperacillin-tazobactam-resistant Gram-negative bacteria (26.5%; 0−57.1%), although statistically not significant. Resistance of Gram-positive bacteria to vancomycin (<1%) and Gram-negative microorganisms to meropenem (1.25%) remained an exception. In summary, coagulase-negative staphylococci, as the most frequent pathogen, displayed a continuously high rate of oxacillin resistance. For the highest antimicrobial coverage in the case of an empiric therapy/unknown pathogen, vancomycin might be chosen. Level of evidence: IV.

13.
Diagnostics (Basel) ; 12(7)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35885558

RESUMO

Periprosthetic joint infections (PJI) are one of the most devastating consequences after total joint arthroplasty. We sought to analyze the causative pathogens of patients with PJI to get better insights and improve treatment. We performed a retrospective study of all patients with PJI of the hip and knee with microbiological detection of a causative pathogen at a tertiary endoprothetic referral center between January 2016 and March 2021. A total of 432 cases with PJI (hip: n = 250; knee: n = 182) were included. The most common causative pathogen were coagulase-negative staphylococci (n = 240; 44.2%), of which Staphylococcus epidermidis (n = 144; 26.7%) was the most frequently detected, followed by S. aureus (n = 77; 14.3%) and enterococci (n = 49; 9%). Gram-negative pathogens and fungi could be detected in 21% (n = 136) and 2.4% (n = 13) of all cases. Overall, 60% of all coagulase-negative staphylococci were oxacillin-resistant, while none of these displayed to be vancomycin-resistant. In summary, the majority of pathogens in cases of PJI could be identified as coagulase-negative staphylococci. For empirical therapy vancomycin might provide the highest antimicrobial coverage in case of an unknown pathogen.

14.
J Neurosci ; 42(31): 6131-6144, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35768209

RESUMO

A pioneering study by Volkmann (1858) revealed that training on a tactile discrimination task improved task performance, indicative of tactile learning, and that such tactile learning transferred from trained to untrained body parts. However, the neural mechanisms underlying tactile learning and transfer of tactile learning have remained unclear. We trained groups of human subjects (female and male) in daily sessions on a tactile discrimination task either by stimulating the palm of the right hand or the sole of the right foot. Task performance before training was similar between the palm and sole. Posttraining transfer of tactile learning was greater from the trained right sole to the untrained right palm than from the trained right palm to the untrained right sole. Functional magnetic resonance imaging (fMRI) and multivariate pattern classification analysis revealed that the somatotopic representation of the right palm in contralateral primary somatosensory cortex (SI) was coactivated during tactile stimulation of the right sole. More pronounced coactivation in the cortical representation of the right palm was associated with lower tactile performance for tactile stimulation of the right sole and more pronounced subsequent transfer of tactile learning from the trained right sole to the untrained right palm. In contrast, coactivation of the cortical sole representation during tactile stimulation of the palm was less pronounced and no association with tactile performance and subsequent transfer of tactile learning was found. These results indicate that tactile learning may transfer to untrained body parts that are coactivated to support tactile learning with the trained body part.SIGNIFICANCE STATEMENT Perceptual skills such as the discrimination of tactile cues can improve by means of training, indicative of perceptual learning and sensory plasticity. However, it has remained unclear whether and if so, how such perceptual learning can occur if the training task is very difficult. Here, we show for tactile perceptual learning that the representation of the palm of the hand in primary somatosensory cortex (SI) is coactivated to support learning of a difficult tactile discrimination task with tactile stimulation of the sole of the foot. Such cortical coactivation of an untrained body part to support tactile learning with a trained body part might be critically involved in the subsequent transfer of tactile learning between the trained and untrained body parts.


Assuntos
Córtex Somatossensorial , Percepção do Tato , Feminino , Mãos/fisiologia , Corpo Humano , Humanos , Masculino , Córtex Somatossensorial/fisiologia , Tato , Percepção do Tato/fisiologia
15.
Oper Orthop Traumatol ; 34(5): 361-371, 2022 Oct.
Artigo em Alemão | MEDLINE | ID: mdl-35362782

RESUMO

OBJECTIVE: Implantation of custom-made acetabular components (CMAC) with load transmission onto the remaining bone stock and reconstruction of the "center of rotation" (COR) in cases of severe periacetabular bone defects. INDICATIONS: Severe periacetabular bone loss (Paprosky type IIIA/B) with or without pelvic discontinuity after septic or aseptic loosening with inadequate load capacity of the dorsal pillar and/or large supraacetabular defects. CONTRAINDICATIONS: Acute or local infections, lack of compliance, taking into account the risks and complications: missing or limited expected postoperative functional gain, multimorbid patients with potential inoperability during the first and/or second intervention. SURGICAL TECHNIQUE: Lateral transgluteal or posterolateral approach while protecting neurovascular and muscular structures. Preparation of the implant site based on preoperative planning with augmentation of bone defects as far as possible. Primarily stable anchoring with 2 angle-stable pole screws in the ilium, an optional pole screw in the pubic bone for determination of COR, and stabilization screws in the iliac wing (optionally angle-stable). Use of dual mobility cup according to the soft tissue tension and intraoperative stability. POSTOPERATIVE MANAGEMENT: For the first 6 weeks postoperative partial weight-bearing (20 kg), followed by a gradual increase of the load (10 kg per week). RESULTS: Between 2008 and 2018, 47 patients with a Paprosky type III defect underwent implantation of a monoflanged CMAC. Main complication was a periprosthetic joint infection with subsequent need for implant removal in 9 of 10 cases. Harris Hip Score improved from 21.1 to 61.5 points. X­ray imaging displayed an angle of inclination of 42.3 ± 5.3°, an anteversion of 16.8 ± 6.2°, a ∆ H of 0.5 ± 0.2 mm and a ∆ V of 17.7 ± 1.1 mm according to Roessler et al.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Acetábulo/diagnóstico por imagem , Acetábulo/cirurgia , Artroplastia de Quadril/métodos , Humanos , Falha de Prótese , Reoperação/métodos , Estudos Retrospectivos , Resultado do Tratamento
16.
Front Neurosci ; 15: 718737, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34658765

RESUMO

Retinal diseases like age-related macular degeneration (AMD) or hereditary juvenile macular dystrophies (JMD) lead to a loss of central vision. Many patients compensate for this loss with a pseudo fovea in the intact peripheral retina, the so-called "preferred retinal locus" (PRL). How extensive eccentric viewing associated with central vision loss (CVL) affects brain structures responsible for visual perception and visually guided eye movements remains unknown. CVL results in a reduction of cortical gray matter in the "lesion projection zone" (LPZ) in early visual cortex, but the thickness of primary visual cortex appears to be largely preserved for eccentric-field representations. Here we explore how eccentric viewing strategies are related to cortical thickness (CT) measures in early visual cortex and in brain areas involved in the control of eye movements (frontal eye fields, FEF, supplementary eye fields, SEF, and premotor eye fields, PEF). We determined the projection zones (regions of interest, ROIs) of the PRL and of an equally peripheral area in the opposite hemifield (OppPRL) in early visual cortex (V1 and V2) in 32 patients with MD and 32 age-matched controls (19-84 years) by functional magnetic resonance imaging. Subsequently, we calculated the CT in these ROIs and compared it between PRL and OppPRL as well as between groups. Additionally, we examined the CT of FEF, SEF, and PEF and correlated it with behavioral measures like reading speed and eccentric fixation stability at the PRL. We found a significant difference between PRL and OppPRL projection zones in V1 with increased CT at the PRL, that was more pronounced in the patients, but also visible in the controls. Although the mean CT of the eye fields did not differ significantly between patients and controls, we found a trend to a positive correlation between CT in the right FEF and SEF and fixation stability in the whole patient group and between CT in the right PEF and reading speed in the JMD subgroup. The results indicate a possible association between the compensatory strategies used by patients with CVL and structural brain properties in early visual cortex and cortical eye fields.

17.
J Vis ; 21(8): 24, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34431964

RESUMO

Although numerous studies have shown that visual perceptual learning (VPL) occurs as a result of exposure to a visual feature in a task-irrelevant manner, the underlying neural mechanism is poorly understood. In a previous psychophysical study (Watanabe et al., 2002), subjects were repeatedly exposed to a task-irrelevant Sekuler motion display that induced the perception of not only the local motions, but also a global motionmoving in the direction of the spatiotemporal average of the local motion vectors. As a result of this exposure, subjects enhanced their sensitivity only to the local moving directions, suggesting that early visual areas (V1/V2) that process local motions are involved in task-irrelevant VPL. However, this hypothesis has never been tested directly using neuronal recordings. Here, we employed a decoded neurofeedback technique (DecNef) using functional magnetic resonance imaging in human subjects to examine the involvement of early visual areas (V1/V2) in task-irrelevant VPL of local motion within a Sekuler motion display. During the DecNef training, subjects were trained to induce the activity patterns in V1/V2 that were similar to those evoked by the actual presentation of the Sekuler motion display. The DecNef training was conducted with neither the actual presentation of the display nor the subjects' awareness of the purpose of the experiment. After the experiment, subjects reported that they neither perceived nor imagined the trained motion during the DecNef training. As a result of DecNef training, subjects increased their sensitivity to the local motion directions, but not specifically to the global motion direction. Neuronal changes related to DecNef training were confined to V1/V2. These results suggest that V1/V2 are involved in exposure-based task-irrelevant VPL of local motion.


Assuntos
Percepção de Movimento , Neurorretroalimentação , Humanos , Imageamento por Ressonância Magnética , Movimento (Física) , Aprendizagem Espacial
18.
Diagnostics (Basel) ; 11(3)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806309

RESUMO

The role and diagnostic value of the synovial complement system in patients with low-grade periprosthetic joint infection (PJI) are unclear. We sought to evaluate, for the first time, the usefulness of synovial complement factors in these patients by measuring the individual synovial fluid levels of complement factors (C1q, C3b/iC3b, C4b, C5, C5a, C9, factor B, factor D, factor H, factor I, properdin, and mannose-binding lectin [MBL]). The patients (n = 74) were classified into septic (n = 28) and aseptic (n = 46). Receiver-operator characteristic curves and a multiple regression model to determine the feasibility of a combination of the tested cytokines to determine the infection status were calculated. The synovial fluid levels of C1q, C3b/C3i, C4b, C5, C5a, MBL, and properdin were significantly elevated in the PJI group. The best sensitivity and specificity was found for C1q. The multiple regression models revealed that the combination of C1q, C3b/C3i, C4b, C5, C5a, and MBL was associated with the best sensitivity (83.3%) and specificity (79.2%) for a cutoff value of 0.62 (likelihood ratio: 4.0; area under the curve: 0.853). Nevertheless, only a combined model showed acceptable results. The expression patterns of the complement factors suggested that PJI activates all three pathways of the complement system.

19.
Neuroimage ; 236: 118081, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33882351

RESUMO

Landmark objects are points of reference that can anchor one's internal cognitive map to the external world while navigating. They are especially useful in indoor environments where other cues such as spatial geometries are often similar across locations. We used functional magnetic resonance imaging (fMRI) and multivariate pattern analysis (MVPA) to understand how the spatial significance of landmark objects is represented in the human brain. Participants learned the spatial layout of a virtual building with arbitrary objects as unique landmarks in each room during a navigation task. They were scanned while viewing the objects before and after learning. MVPA revealed that the neural representation of landmark objects in the right parahippocampal place area (rPPA) and the hippocampus transformed systematically according to their locations. Specifically, objects in different rooms became more distinguishable than objects in the same room. These results demonstrate that rPPA and the hippocampus encode the spatial significance of landmark objects in indoor spaces.


Assuntos
Mapeamento Encefálico , Hipocampo/fisiologia , Giro Para-Hipocampal/fisiologia , Aprendizagem Espacial/fisiologia , Adulto , Feminino , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Giro Para-Hipocampal/diagnóstico por imagem , Adulto Jovem
20.
J Neurosci ; 41(9): 1970-1981, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33452222

RESUMO

Attending to a stimulus enhances the neuronal responses to it, while responses to nonattended stimuli are not enhanced and may even be suppressed. Although the neural mechanisms of response enhancement for attended stimuli have been intensely studied, the neural mechanisms underlying attentional suppression remain largely unknown. It is uncertain whether attention acts to suppress the processing in sensory cortical areas that would otherwise process the nonattended stimulus or the subcortical input to these cortical areas. Moreover, the neurochemical mechanisms inducing a reduction or suppression of neuronal responses to nonattended stimuli are as yet unknown. Here, we investigated how attention directed toward visual processing cross-modally acts to suppress vestibular responses in the human brain. By using functional magnetic resonance spectroscopy in a group of female and male subjects, we find that attention to visual motion downregulates in a load-dependent manner the concentration of excitatory neurotransmitter (glutamate and its precursor glutamine, referred to together as Glx) within the parietoinsular vestibular cortex (PIVC), a core cortical area of the vestibular system, while leaving the concentration of inhibitory neurotransmitter (GABA) in PIVC unchanged. This makes PIVC less responsive to excitatory thalamic vestibular input, as corroborated by functional magnetic resonance imaging. Together, our results suggest that attention acts to suppress the processing of nonattended sensory cues cortically by neurochemically rendering the core cortical area of the nonattended sensory modality less responsive to excitatory thalamic input.SIGNIFICANCE STATEMENT Here, we address a fundamental problem that has eluded attention research for decades, namely, how the brain ignores irrelevant stimuli. To date, three classes of solutions to this problem have been proposed: (1) enhancement of GABAergic interneuron activity in cortex, (2) downregulation of glutamatergic cell activity in cortex; and (3) downregulation of neural activity in thalamic projection areas, which would then provide the cortex with less input. Here, we use magnetic resonance spectroscopy in humans and find support for the second hypothesis, implying that attention to one sensory modality involves the suppression of irrelevant stimuli of another sensory modality by downregulating glutamate in the cortex.


Assuntos
Atenção/fisiologia , Córtex Cerebral/fisiologia , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Adulto , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Estimulação Luminosa , Percepção Visual/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...