Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22282913

RESUMO

BackgroundA significant proportion of patients experience prolonged pulmonary, cardiocirculatory or neuropsychiatric symptoms after Coronavirus disease 2019 (COVID-19), termed post-acute sequelae of COVID (PASC). Lung manifestations of PASC include cough, dyspnea on exertion and persistent radiologic abnormalities and have been linked to viral persistence, ongoing inflammation and immune dysregulation. So far, there is limited data on lung histopathology and tissue-based immune cell subtyping in PASC. Methods51 unvaccinated patients (median age, 40 years; 43% female) with a median of 17 weeks (range, 2-55 weeks) after mild SARS-CoV-2 infection (without hospitalization) underwent full clinical evaluation including high-resolution computed tomography (HR-CT) and transbronchial biopsy. We used RT-PCR/FISH and immunohistochemistry (nucleocapsid/spike/CD3/CD4/CD8) for residual SARS-CoV-2 detection and T lymphocyte subtyping, respectively. We assessed interstitial fibrosis and macrophage profiles by transmission electron microscopy (TEM) and immunofluorescence multiplex staining, while cytokine profiling in bronchoalveolar lavage (BAL) fluid was performed by legendplex immunoassay. ResultsDyspnea on exertion was the leading symptom of pulmonary PASC in our cohort. In 16% and 42.9% of patients, FEV1 and MEF50 were [≤] 80% and 35.3% showed low attenuation volume (LAV) in >5% of lung area, in line with airflow obstruction. There was a significant correlation between oxygen pulse and time since COVID (p=0.009). Histopathologically, PASC manifested as organizing pneumonia (OP), fibrinous alveolitis and increased CD4+ T cell infiltrate predominantly around airways (bronchiolitis), while the residual virus components were detectable in only a single PASC patient (2%). T cell infiltrates around small airways were inversely correlated with time since COVID, however, this trend failed to reach statistical significance. We identified discrete interstitial fibrosis and a pro-fibrotic macrophage subtype (CD68/CD163/S100A9) as well as significantly elevated interleukin 1{beta} in BAL fluid from PASC patients (p=0.01), but H-scores for fibrotic macrophage population did not correlate with severity of clinical symptoms or T cell infiltration. InterpretationWe show decreased FEV1/MEF50 and increased LAV in line with obstructive lung disease due to CD4+ T cell-predominant bronchiolitis as well as evidence of pro-fibrotic signaling in a subset of unvaccinated PASC patients. Since our results point towards self-limiting inflammation of small airways without detectable viral reservoirs, it remains unclear whether pulmonary symptoms in PASC are SARS-CoV-2-specific or represent a general response to viral infection. Still, evidence of pro-fibrotic signaling should warrant clincal follow-up and further research into possible long-time fibrotic remodeling in PASC patients. Key pointsO_LIDyspnea on exertion is the leading clinical manifestation of PASC in the lung C_LIO_LIa minority of pts have significantly impaired lung function (FVC/TLC[≤]80% or DLCO[≤]70%) in spiroergometry and/or radiologic abnormalities, oxygen pulse seems to normalize over time O_LI16% and 42.9% of pts have FEV1 and MEF50[≤]80% and 35.3% have LAV>5% of lung area, in line with airflow obstruction due to bronchiolitis C_LI C_LIO_LIResidual virus was not detectable in the lung tissue of all but one PASC patient (2%) C_LIO_LIHistologically, PASC may manifest as T cell-mediated bronchiolitis, OP and fibrinous alveolitis C_LIO_LIThere is evidence of fibrotic remodeling (ultrastructural interstitial fibrosis, pro-fibrotic macrophage subpopulation, pro-fibrotic cytokine IL-1{beta} in BAL) but this did not correlate with the degree of T cell infiltrate/bronchiolitis C_LI

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-512606

RESUMO

Type-I interferons (IFN-I) are critical mediators of innate control of viral infections, but also drive recruitment of inflammatory cells to sites of infection, a key feature of severe COVID-19. Here, and for the first time, IFN-I signaling was modulated in rhesus macaques (RMs) prior to and during acute SARS-CoV-2 infection using a mutated IFN2 (IFN-modulator; IFNmod), which has previously been shown to reduce the binding and signaling of endogenous IFN-I. In SARS-CoV-2-infected RMs, IFNmod reduced both antiviral and inflammatory ISGs. Notably, IFNmod treatment resulted in a potent reduction in (i) SARS-CoV-2 viral load in Bronchoalveolar lavage (BAL), upper airways, lung, and hilar lymph nodes; (ii) inflammatory cytokines, chemokines, and CD163+MRC1-inflammatory macrophages in BAL; and (iii) expression of Siglec-1, which enhances SARS-CoV-2 infection and predicts disease severity, on circulating monocytes. In the lung, IFNmod also reduced pathogenesis and attenuated pathways of inflammasome activation and stress response during acute SARS-CoV-2 infection. This study, using an intervention targeting both IFN- and IFN-{beta} pathways, shows that excessive inflammation driven by type 1 IFN critically contributes to SARS-CoV-2 pathogenesis in RMs, and demonstrates the potential of IFNmod to limit viral replication, SARS-CoV-2 induced inflammation, and COVID-19 severity.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-488221

RESUMO

The SARS-CoV-2 Omicron variant rapidly outcompeted other variants and currently dominates the COVID-19 pandemic. Its enhanced transmission, immune evasion and pathogenicity is thought to be driven by numerous mutations in the Omicron Spike protein. Here, we examined the impact of amino acid changes that are characteristic for the BA.1 and/or BA.2 Omicron lineages on Spike function, processing and susceptibility to neutralization. Individual mutations of S371F/L, S375F and T376A in the ACE2 receptor-binding domain as well as Q954H and N969K in the hinge region 1 impaired infectivity, while changes of G339D, D614G, N764K and L981F moderately enhanced it. Most mutations in the N-terminal region and the receptor binding domain reduced sensitivity of the Spike protein to neutralization by sera from individuals vaccinated with the BNT162b2 vaccine or therapeutic antibodies. Our results represent a systematic functional analysis of Omicron Spike adaptations that allowed this SARS-CoV-2 variant to overtake the current pandemic. HIGHLIGHTSO_LIS371F/L, S373P and S375F impair Spike function and revert in some BA. 1 isolates C_LIO_LIChanges of Q954H and N969K in HR1 reduce while L981F enhances S-mediated infection C_LIO_LIOmicron-specific mutations in the NTD and RBD of Spike reduce neutralization C_LIO_LIN440K, G446S, E484A and Q493K confer resistance to bamlanivimab or imdevimab C_LI

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-471527

RESUMO

The authors have withdrawn this manuscript due to a duplicate posting of manuscript number BIORXIV/2021/468942. Therefore, the authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding author.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-468777

RESUMO

Interferons are a major part of the anti-viral innate defense system. Successful pathogens, including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), need to overcome these defenses to establish an infection. Early induction of interferons (IFNs) protects against severe coronavirus disease 2019 (COVID-19). In line with this, SARS-CoV-2 is inhibited by IFNs in vitro, and IFN-based therapies against COVID-19 are investigated in clinical trials. However, SARS-CoV-2 continues to adapt to the human population resulting in the emergence of variants characterized by increased transmission fitness and/or decreased sensitivity to preventive or therapeutic measures. It has been suggested that the efficient spread of these so-called "Variants of Concern" (VOCs) may also involve reduced sensitivity to IFNs. Here, we examined whether the four current VOCs (Alpha, Beta, Gamma and Delta) differ in replication efficiency or IFN sensitivity from an early isolate of SARS-CoV-2. All viruses replicated in a human lung cell line and in iPSC-derived alveolar type II cells (iAT2). The Delta variant showed accelerated replication kinetics and higher infectious virus production compared to the early 2020 isolate. Replication of all SARS-CoV-2 VOCs was reduced in the presence of exogenous type I, II and III IFNs. On average, the Alpha variant was the least susceptible to IFNs and the Alpha, Beta and Gamma variants show increased resistance against type III IFN. Although the Delta variant has outcompeted all other variants in humans it remained as sensitive to IFNs as an early 2020 SARS-CoV-2 isolate. This suggests that increased replication fitness rather than IFN resistance may be a reason for its dominance. Our results may help to understand changes in innate immune susceptibility of VOCs, and inform clinical trials exploring IFN-based COVID-19 therapies.

6.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-468942

RESUMO

It has recently been shown that an early SARS-CoV-2 isolate (NL-02-2020) hijacks interferon-induced transmembrane proteins (IFITMs) for efficient replication in human cells. To date, several "Variants of Concern" (VOCs) showing increased infectivity and resistance to neutralization have emerged and globally replaced the early viral strains. Here, we determined whether the four SARS-CoV-2 VOCs (Alpha, Beta, Gamma and Delta) maintained the dependency on IFITM proteins for efficient replication. We found that depletion of IFITM2 strongly reduces viral RNA production by all four VOCs in the human epithelial lung cancer cell line Calu-3. Silencing of IFITM1 had little effect, while knock-down of IFITM3 resulted in an intermediate phenotype. Strikingly, depletion of IFITM2 generally reduced infectious virus production by more than four orders of magnitude. In addition, an antibody directed against the N-terminus of IFITM2 inhibited SARS-CoV-2 VOC replication in iPSC-derived alveolar epithelial type II cells thought to represent major viral target cells in the lung. In conclusion, endogenously expressed IFITM proteins (especially IFITM2) are critical cofactors for efficient replication of genuine SARS-CoV-2 VOCs, including the currently dominating Delta variant. IMPORTANCERecent results showed that an early SARS-CoV-2 isolate requires endogenously expressed IFITM proteins for efficient infection. However, whether IFITMs are also important cofactors for infection of emerging SARS-CoV-2 VOCs that out-competed the original strains and currently dominate the pandemic remained to be determined. Here, we demonstrate that depletion of endogenous IFITM2 expression almost entirely prevents the production of infectious Alpha, Beta, Gamma and Delta VOC SARS-CoV-2 virions in a human lung cell line. In comparison, silencing of IFITM1 had little impact, while knock-down of IFITM3 had intermediate effects on viral replication. Finally, an antibody targeting the N-terminus of IFITM2 inhibited SARS-CoV-2 VOC replication in iPSC-derived alveolar epithelial type II cells. Our results show that SARS-CoV-2 VOCs including the currently dominant Delta variant are dependent on IFITM2 for efficient replication suggesting that IFITM proteins play a key role in viral transmission and pathogenicity.

7.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21257971

RESUMO

Heterologous COVID-19 vaccination regimens combining vector- and mRNA-based vaccines are already administered, but data on solicited adverse reactions, immunological responses and elicited protection are limited. We aimed to evaluate the reactogenicity, humoral and cellular immune responses towards different SARS-CoV-2 variants after a heterologous ChAdOx1 nCoV-19 BNT162b2 prime-boost vaccination and analyzed a cohort of 26 individuals aged 25-46 (median 30.5) years that received a ChAdOx1 nCoV-19 prime followed by a BNT162b2 boost after an 8- week interval. Self-reported solicited symptoms after ChAdOx1 nCoV-19 prime were in line with previous reports and less severe after the BNT162b2 boost. Antibody titers increased significantly over time resulting in strong neutralization titers two weeks after the BNT162b2 boost. Neutralizing activity against the prevalent strain B.1.1.7 (Alpha) and immune-evading VOC B.1.351 (Beta) was [~]4-fold higher than in individuals receiving homologous BNT162b2 vaccination. No difference was seen in neutralization of VOI B.1.617 (Kappa). In addition, the heterologous vaccination induced CD4+ and CD8+ T cells reactive to SARS-CoV-2 spike peptides of all analyzed variants; Wuhan-Hu-1, B.1.1.7, B.1.351, and P.1 (Gamma). In conclusion, heterologous ChAdOx1 nCoV-19 / BNT162b2 prime-boost vaccination regimen is not associated with serious adverse events and results in a potent humoral immune response and elicits T cell reactivity. Variants B.1.1.7, B.1.351 and B.1.617.1 are potently neutralized by sera of all participants and reactive T cells recognize spike peptides of all tested variants. These results suggest that this heterologous vaccination regimen is at least as immunogenic and protective as homologous vaccinations.

8.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-446386

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the COVID-19 pandemic, most likely emerged from bats1. A prerequisite for this devastating zoonosis was the ability of the SARS-CoV-2 Spike (S) glycoprotein to use human angiotensin-converting enzyme 2 (ACE2) for viral entry. Although the S protein of the closest related bat virus, RaTG13, shows high similarity to the SARS-CoV-2 S protein it does not efficiently interact with the human ACE2 receptor2. Here, we show that a single T403R mutation allows the RaTG13 S to utilize the human ACE2 receptor for infection of human cells and intestinal organoids. Conversely, mutation of R403T in the SARS-CoV-2 S significantly reduced ACE2-mediated virus infection. The S protein of SARS-CoV-1 that also uses human ACE2 also contains a positive residue (K) at this position, while the S proteins of CoVs utilizing other receptors vary at this location. Our results indicate that the presence of a positively charged amino acid at position 403 in the S protein is critical for efficient utilization of human ACE2. This finding could help to predict the zoonotic potential of animal coronaviruses.

9.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21256382

RESUMO

In light of the COVID-19 pandemic, universities around the world were challenged by the difficult decision whether classes could be held face-to-face in the winter semester 20/21. The gross anatomy course is considered an essential practical element of medical school. In order to protect the participants and teaching staff and to gain more knowledge about SARS-CoV-2 infections among students during a semester with face-to-face teaching a longitudinal test study was conducted. Medical students from the first three years of medical school were also invited. Out of a total of almost 1,000 swabs, only two active asymptomatic infections were detected at the start of the semester, none during the semester. At semester start, approximately 6% of the students had antibodies. At the end of the semester, only nine seroconversions after infection in 671 individuals occurred. This was surprisingly low because a massive second wave of infections hit Germany during the same period. The conclusion therefore is that face-to-face teaching under these measures was not infection-promoting even with high incidence rates in the overall population with the SARS-CoV-2 variants present at that time period. Moreover, the results are indicative of a preventive effect of hygiene concepts together with repetitive testings before and during a semester.

10.
Acta Pharmaceutica Sinica B ; (6): 2694-2708, 2021.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-888881

RESUMO

Aberrant CXCR4/CXCL12 signaling is involved in many pathophysiological processes such as cancer and inflammatory diseases. A natural fragment of serum albumin, named EPI-X4, has previously been identified as endogenous peptide antagonist and inverse agonist of CXCR4 and is a promising compound for the development of improved analogues for the therapy of CXCR4-associated diseases. To generate optimized EPI-X4 derivatives we here performed molecular docking analysis to identify key interaction motifs of EPI-X4/CXCR4. Subsequent rational drug design allowed to increase the anti-CXCR4 activity of EPI-X4. The EPI-X4 derivative JM#21 bound CXCR4 and suppressed CXCR4-tropic HIV-1 infection more efficiently than the clinically approved small molecule CXCR4 antagonist AMD3100. EPI-X4 JM#21 did not exert toxic effects in zebrafish embryos and suppressed allergen-induced infiltration of eosinophils and other immune cells into the airways of animals in an asthma mouse model. Moreover, topical administration of the optimized EPI-X4 derivative efficiently prevented inflammation of the skin in a mouse model of atopic dermatitis. Thus, rationally designed EPI-X4 JM#21 is a novel potent antagonist of CXCR4 and the first CXCR4 inhibitor with therapeutic efficacy in atopic dermatitis. Further clinical development of this new class of CXCR4 antagonists for the therapy of atopic dermatitis, asthma and other CXCR4-associated diseases is highly warranted.

11.
Neuroscience Bulletin ; (6): 1039-1050, 2021.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-951974

RESUMO

GABA is the main inhibitory neurotransmitter in the CNS acting at two distinct types of receptor: ligand-gated ionotropic GABA

12.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-340612

RESUMO

The innate immune system constitutes a powerful barrier against viral infections. However, it may fail because successful emerging pathogens, like SARS-CoV-2, evolved strategies to counteract it. Here, we systematically assessed the impact of 29 SARS-CoV-2 proteins on viral sensing, type I, II and III interferon (IFN) signaling, autophagy and inflammasome formation. Mechanistic analyses show that autophagy and type I IFN responses are effectively counteracted at different levels. For example, Nsp14 induces loss of the IFN receptor, whereas ORF3a disturbs autophagy at the Golgi/endosome interface. Comparative analyses revealed that antagonism of type I IFN and autophagy is largely conserved, except that SARS-CoV-1 Nsp15 is more potent in counteracting type I IFN than its SARS-CoV-2 ortholog. Altogether, however, SARS-CoV-2 counteracts type I IFN responses and autophagy much more efficiently than type II and III IFN signaling. Consequently, the virus is relatively resistant against exogenous IFN-/{beta} and autophagy modulation but remains highly vulnerable towards IFN-{gamma} and -{lambda} treatment. In combination, IFN-{gamma} and -{lambda} act synergistically, and drastically reduce SARS-CoV-2 replication at exceedingly low doses. Our results identify ineffective type I and II antagonism as weakness of SARS-CoV-2 that may allow to devise safe and effective anti-viral therapies based on targeted innate immune activation.

13.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-255935

RESUMO

Interferon-induced transmembrane proteins (IFITMs 1, 2 and 3) are thought to restrict numerous viral pathogens including severe acute respiratory syndrome coronaviruses (SARS-CoVs). However, most evidence comes from single-round pseudovirus infection studies of cells that overexpress IFITMs. Here, we verified that artificial overexpression of IFITMs blocks SARS-CoV-2 infection. Strikingly, however, endogenous IFITM expression was essential for efficient infection of genuine SARS-CoV-2 in human lung cells. Our results indicate that the SARS-CoV-2 Spike protein interacts with IFITMs and hijacks them for efficient viral entry. IFITM proteins were expressed and further induced by interferons in human lung, gut, heart and brain cells. Intriguingly, IFITM-derived peptides and targeting antibodies inhibited SARS-CoV-2 entry and replication in human lung cells, cardiomyocytes and gut organoids. Our results show that IFITM proteins are important cofactors for SARS-CoV-2 infection of human cell types representing in vivo targets for viral transmission, dissemination and pathogenesis and suitable targets for therapeutic approaches.

14.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-183764

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). To identify factors of the respiratory tract that suppress SARS-CoV-2, we screened a peptide/protein library derived from bronchoalveolar lavage, and identified 1-antitrypsin (1-AT) as specific inhibitor of SARS-CoV-2. 1-AT targets the viral spike protein and blocks SARS-CoV-2 infection of human airway epithelium at physiological concentrations. Our findings show that endogenous 1-AT restricts SARS-CoV-2 and repurposes 1-AT-based drugs for COVID-19 therapy.

15.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-134379

RESUMO

Recent evidence shows that the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is highly sensitive to interferons (IFNs). However, the underlying antiviral effectors remain to be defined. Here, we show that Zinc finger antiviral protein (ZAP) that specifically targets CpG dinucleotides in viral RNA sequences restricts SARS-CoV-2. We demonstrate that ZAP and its cofactors KHNYN and TRIM25 are expressed in human lung cells. Type I, II and III IFNs all strongly inhibited SARS-CoV-2 and further induced ZAP expression. Strikingly, SARS-CoV-2 and its closest relatives from bats show the strongest CpG suppression among all known human and bat coronaviruses, respectively. Nevertheless, knock-down of ZAP significantly increased SARS-CoV-2 production in lung cells, particularly upon treatment with IFN- or IFN-{gamma}. Thus, our results identify ZAP as an effector of the IFN response against SARS-CoV-2, although this pandemic pathogen may be preadapted to the low CpG environment in humans. HighlightsO_LISARS-CoV-2 and its closest bat relatives show strong CpG suppression C_LIO_LIIFN-{beta}, -{gamma} and -{lambda} inhibit SARS-CoV-2 with high efficiency C_LIO_LIZAP restricts SARS-CoV-2 and contributes to the antiviral effect of IFNs C_LI

16.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20075523

RESUMO

SARS-CoV-2 (CoV-2) is mainly transmitted in the human population during close contact and respiratory droplets. It is currently unclear, however, whether CoV-2 is shed into milk and may also be transmitted from infected mothers to newborns trough breast feeding. Two recent reviews on the topic (1,2) did not find evidence for CoV-2 in human milk. However, the number of breast milk samples analyzed so far is small and samples were taken only once from each mother (2).

17.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-102467

RESUMO

SARS-CoV-2 is the causative agent of the current COVID-19 pandemic. A major virulence factor of SARS-CoVs is the nonstructural protein 1 (Nsp1) which suppresses host gene expression by ribosome association via an unknown mechanism. Here, we show that Nsp1 from SARS-CoV-2 binds to 40S and 80S ribosomes, resulting in shutdown of capped mRNA translation both in vitro and in cells. Structural analysis by cryo-electron microscopy (cryo-EM) of in vitro reconstituted Nsp1-40S and of native human Nsp1-ribosome complexes revealed that the Nsp1 C-terminus binds to and obstructs the mRNA entry tunnel. Thereby, Nsp1 effectively blocks RIG-I-dependent innate immune responses that would otherwise facilitate clearance of the infection. Thus, the structural characterization of the inhibitory mechanism of Nsp1 may aid structure-based drug design against SARS-CoV-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...