Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 15(1): 89, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528578

RESUMO

BACKGROUND: Human pluripotent stem cells (hPSCs) have an enormous therapeutic potential, but large quantities of cells will need to be supplied by reliable, economically viable production processes. The suspension culture (three-dimensional; 3D) of hPSCs in stirred tank bioreactors (STBRs) has enormous potential for fuelling these cell demands. In this study, the efficient long-term matrix-free suspension culture of hPSC aggregates is shown. METHODS AND RESULTS: STBR-controlled, chemical aggregate dissociation and optimized passage duration of 3 or 4 days promotes exponential hPSC proliferation, process efficiency and upscaling by a seed train approach. Intermediate high-density cryopreservation of suspension-derived hPSCs followed by direct STBR inoculation enabled complete omission of matrix-dependent 2D (two-dimensional) culture. Optimized 3D cultivation over 8 passages (32 days) cumulatively yielded ≈4.7 × 1015 cells, while maintaining hPSCs' pluripotency, differentiation potential and karyotype stability. Gene expression profiling reveals novel insights into the adaption of hPSCs to continuous 3D culture compared to conventional 2D controls. CONCLUSIONS: Together, an entirely matrix-free, highly efficient, flexible and automation-friendly hPSC expansion strategy is demonstrated, facilitating the development of good manufacturing practice-compliant closed-system manufacturing in large scale.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Pluripotentes , Humanos , Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes/metabolismo , Diferenciação Celular , Reatores Biológicos , Criopreservação
2.
Nat Protoc ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548938

RESUMO

A promising cell-therapy approach for heart failure aims at differentiating human pluripotent stem cells (hPSCs) into functional cardiomyocytes (CMs) in vitro to replace the disease-induced loss of patients' heart muscle cells in vivo. But many challenges remain for the routine clinical application of hPSC-derived CMs (hPSC-CMs), including good manufacturing practice (GMP)-compliant production strategies. This protocol describes the efficient generation of hPSC-CM aggregates in suspension culture, emphasizing process simplicity, robustness and GMP compliance. The strategy promotes clinical translation and other applications that require large numbers of CMs. Using a simple spinner-flask platform, this protocol is applicable to a broad range of users with general experience in handling hPSCs without extensive know-how in biotechnology. hPSCs are expanded in monolayer to generate the required cell numbers for process inoculation in suspension culture, followed by stirring-controlled formation of cell-only aggregates at a 300-ml scale. After 48 h at checkpoint (CP) 0, chemically defined cardiac differentiation is induced by WNT-pathway modulation through use of the glycogen-synthase kinase-3 inhibitor CHIR99021 (WNT agonist), which is replaced 24 h later by the chemical WNT-pathway inhibitor IWP-2. The exact application of the described process parameters is important to ensure process efficiency and robustness. After 10 d of differentiation (CP I), the production of ≥100 × 106 CMs is expected. Moreover, to 'uncouple' cell production from downstream applications, continuous maintenance of CM aggregates for up to 35 d in culture (CP II) is demonstrated without a reduction in CM content, supporting downstream logistics while potentially overcoming the requirement for cryopreservation.

4.
Stem Cells Transl Med ; 10(7): 1063-1080, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33660952

RESUMO

To harness the full potential of human pluripotent stem cells (hPSCs) we combined instrumented stirred tank bioreactor (STBR) technology with the power of in silico process modeling to overcome substantial, hPSC-specific hurdles toward their mass production. Perfused suspension culture (3D) of matrix-free hPSC aggregates in STBRs was applied to identify and control process-limiting parameters including pH, dissolved oxygen, glucose and lactate levels, and the obviation of osmolality peaks provoked by high density culture. Media supplements promoted single cell-based process inoculation and hydrodynamic aggregate size control. Wet lab-derived process characteristics enabled predictive in silico modeling as a new rational for hPSC cultivation. Consequently, hPSC line-independent maintenance of exponential cell proliferation was achieved. The strategy yielded 70-fold cell expansion in 7 days achieving an unmatched density of 35 × 106 cells/mL equivalent to 5.25 billion hPSC in 150 mL scale while pluripotency, differentiation potential, and karyotype stability was maintained. In parallel, media requirements were reduced by 75% demonstrating the outstanding increase in efficiency. Minimal input to our in silico model accurately predicts all main process parameters; combined with calculation-controlled hPSC aggregation kinetics, linear process upscaling is also enabled and demonstrated for up to 500 mL scale in an independent bioreactor system. Thus, by merging applied stem cell research with recent knowhow from industrial cell fermentation, a new level of hPSC bioprocessing is revealed fueling their automated production for industrial and therapeutic applications.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Pluripotentes , Reatores Biológicos , Diferenciação Celular , Simulação por Computador , Meios de Cultura , Humanos , Células-Tronco Pluripotentes/citologia
5.
Nat Biotechnol ; 39(6): 737-746, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33558697

RESUMO

Organoid models of early tissue development have been produced for the intestine, brain, kidney and other organs, but similar approaches for the heart have been lacking. Here we generate complex, highly structured, three-dimensional heart-forming organoids (HFOs) by embedding human pluripotent stem cell aggregates in Matrigel followed by directed cardiac differentiation via biphasic WNT pathway modulation with small molecules. HFOs are composed of a myocardial layer lined by endocardial-like cells and surrounded by septum-transversum-like anlagen; they further contain spatially and molecularly distinct anterior versus posterior foregut endoderm tissues and a vascular network. The architecture of HFOs closely resembles aspects of early native heart anlagen before heart tube formation, which is known to require an interplay with foregut endoderm development. We apply HFOs to study genetic defects in vitro by demonstrating that NKX2.5-knockout HFOs show a phenotype reminiscent of cardiac malformations previously observed in transgenic mice.


Assuntos
Coração/embriologia , Intestinos/embriologia , Organoides/embriologia , Padronização Corporal , Desenvolvimento Embrionário , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/genética , Fator 4 Nuclear de Hepatócito/genética , Proteína Homeobox Nkx-2.5/genética , Humanos , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXF/genética , Análise de Sequência de RNA
6.
Vector Borne Zoonotic Dis ; 20(6): 471-475, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32013767

RESUMO

Cowpox virus (CPXV), genus Orthopoxvirus, family Poxviridae, is a zoonotic pathogen in Eurasian wild rodents. High seroprevalences have been reported previously for vole and murine species in Europe. In contrast, viral DNA was only rarely detected, and very few reservoir-derived CPXV isolates exist. In this study, CPXV DNA and CPXV-reactive antibodies were monitored in wild small mammals for 5 years in four German federal states. Screening of liver tissues of 3966 animals by CPXV real-time PCR (qPCR) revealed five voles of two species positive for CPXV DNA. Two positive bank voles (Myodes glareolus) and two positive common voles (Microtus arvalis) originated from two plots in Baden-Wuerttemberg. One positive bank vole originated from Mecklenburg-Western Pomerania. None of the small mammals from Thuringia and North Rhine-Westphalia was positive in the qPCR. CPXV antigen-based indirect immunofluorescence assays of 654 highly diluted chest cavity fluid samples detected two bank voles and two common voles from the same sites in Baden-Wuerttemberg to be highly seroreactive. Five animals were CPXV DNA positive, and four other animals were orthopoxvirus seropositive. Our study indicates both a very low prevalence and a patchy occurrence of CPXV in common and bank voles and absence in other rodent and shrew species in Germany. The multiple detection of infected voles at one site in Baden-Wuerttemberg and continued detection in a region of Mecklenburg-Western Pomerania classify these regions as potential endemic foci.


Assuntos
Arvicolinae/virologia , Vírus da Varíola Bovina/isolamento & purificação , Varíola Bovina/veterinária , Reservatórios de Doenças/veterinária , Doenças dos Roedores/virologia , Distribuição Animal , Animais , Varíola Bovina/epidemiologia , Varíola Bovina/virologia , Ecossistema , Alemanha/epidemiologia , Humanos , Fígado/virologia , Doenças dos Roedores/epidemiologia
7.
J Virol ; 94(2)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31645446

RESUMO

Cowpox virus (CPXV) is a zoonotic orthopoxvirus (OPV) that causes spillover infections from its animal hosts to humans. In 2009, several human CPXV cases occurred through transmission from pet rats. An isolate from a diseased rat, RatPox09, exhibited significantly increased virulence in Wistar rats and caused high mortality compared to that caused by the mildly virulent laboratory strain Brighton Red (BR). The RatPox09 genome encodes four genes which are absent in the BR genome. We hypothesized that their gene products could be major factors influencing the high virulence of RatPox09. To address this hypothesis, we employed several BR-RatPox09 chimeric viruses. Using Red-mediated mutagenesis, we generated BR-based knock-in mutants with single or multiple insertions of the respective RatPox09 genes. High-throughput sequencing was used to verify the genomic integrity of all recombinant viruses, and transcriptomic analyses confirmed that the expression profiles of the genes that were adjacent to the modified ones were unaltered. While the in vitro growth kinetics were comparable to those of BR and RatPox09, we discovered that a knock-in BR mutant containing the four RatPox09-specific genes was as virulent as the RatPox09 isolate, causing death in over 75% of infected Wistar rats. Unexpectedly, the insertion of gCPXV0030 (g7tGP) alone into the BR genome resulted in significantly higher clinical scores and lower survival rates matching the rate for rats infected with RatPox09. The insertion of gCPXV0284, encoding the BTB (broad-complex, tramtrack, and bric-à-brac) domain protein D7L, also increased the virulence of BR, while the other two open reading frames failed to rescue virulence independently. In summary, our results confirmed our hypothesis that a relatively small set of four genes can contribute significantly to CPXV virulence in the natural rat animal model.IMPORTANCE With the cessation of vaccination against smallpox and its assumed cross-protectivity against other OPV infections, waning immunity could open up new niches for related poxviruses. Therefore, the identification of virulence mechanisms in CPXV is of general interest. Here, we aimed to identify virulence markers in an experimental rodent CPXV infection model using bacterial artificial chromosome (BAC)-based virus recombineering. We focused our work on the recent zoonotic CPXV isolate RatPox09, which is highly pathogenic in Wistar rats, unlike the avirulent BR reference strain. In several animal studies, we were able to identify a novel set of CPXV virulence genes. Two of the identified virulence genes, encoding a putative BTB/POZ protein (CPXVD7L) and a B22R-family protein (CPXV7tGP), respectively, have not yet been described to be involved in CPXV virulence. Our results also show that single genes can significantly affect virulence, thus facilitating adaptation to other hosts.


Assuntos
Vírus da Varíola Bovina , Genoma Viral , Mutação , Animais , Chlorocebus aethiops , Varíola Bovina/genética , Varíola Bovina/metabolismo , Vírus da Varíola Bovina/genética , Vírus da Varíola Bovina/metabolismo , Vírus da Varíola Bovina/patogenicidade , Humanos , Mutagênese , Ratos , Ratos Wistar , Células Vero
9.
Sci Rep ; 9(1): 11173, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31371804

RESUMO

Loss-of-function mutations of the SCN5A gene encoding for the sodium channel α-subunit NaV1.5 result in the autosomal dominant hereditary disease Brugada Syndrome (BrS) with a high risk of sudden cardiac death in the adult. We here engineered human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) carrying the CRISPR/Cas9 introduced BrS-mutation p.A735V-NaV1.5 (g.2204C > T in exon 14 of SCN5A) as a novel model independent of patient´s genetic background. Recent studies raised concern regarding the use of hiPSC-CMs for studying adult-onset hereditary diseases due to cells' immature phenotype. To tackle this concern, long-term cultivation of hiPSC-CMs on a stiff matrix (27-42 days) was applied to promote maturation. Patch clamp recordings of A735V mutated hiPSC-CMs revealed a substantially reduced upstroke velocity and sodium current density, a prominent rightward shift of the steady state activation curve and decelerated recovery from inactivation as compared to isogenic hiPSC-CMs controls. These observations were substantiated by a comparative study on mutant A735V-NaV1.5 channels heterologously expressed in HEK293T cells. In contrast to mutated hiPSC-CMs, a leftward shift of sodium channel inactivation was not observed in HEK293T, emphasizing the importance of investigating mechanisms of BrS in independent systems. Overall, our approach supports hiPSC-CMs' relevance for investigating channelopathies in a dish.


Assuntos
Síndrome de Brugada/genética , Células-Tronco Pluripotentes Induzidas/citologia , Mutação , Miócitos Cardíacos/patologia , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Adulto , Síndrome de Brugada/patologia , Sistemas CRISPR-Cas , Células HEK293 , Humanos , Técnicas de Patch-Clamp
10.
Stem Cell Reports ; 13(2): 366-379, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31353227

RESUMO

Aiming at clinical translation, robust directed differentiation of human pluripotent stem cells (hPSCs), preferentially in chemically defined conditions, is a key requirement. Here, feasibility of suspension culture based hPSC-cardiomyocyte (hPSC-CM) production in low-cost, xeno-free media compatible with good manufacturing practice standards is shown. Applying stirred tank bioreactor systems at increasing dimensions, our advanced protocol enables routine production of about 1 million hPSC-CMs/mL, yielding ∼1.3 × 108 CM in 150 mL and ∼4.0 × 108 CMs in 350-500 mL process scale at >90% lineage purity. Process robustness and efficiency is ensured by uninterrupted chemical WNT pathway control at early stages of differentiation and results in the formation of almost exclusively ventricular-like CMs. Modulated WNT pathway regulation also revealed the previously unappreciated role of ROR1/CD13 as superior surrogate markers for predicting cardiac differentiation efficiency as soon as 72 h of differentiation. This monitoring strategy facilitates process upscaling and controlled mass production of hPSC derivatives.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Meios de Cultura/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Reatores Biológicos , Antígenos CD13/genética , Antígenos CD13/metabolismo , Técnicas de Cultura de Células/métodos , Meios de Cultura/química , Humanos , Mesoderma/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo
11.
Stem Cell Res ; 32: 1-7, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30145492

RESUMO

With their capability to self-renew and differentiate into derivatives of all three germ layers, human pluripotent stem cells (hPSCs) offer a unique model to study aspects of human development in vitro. Directed differentiation towards mesendodermal lineages is a complex process, involving transition through a primitive streak (PS)-like stage. We have recently shown PS-like patterning from hPSCs into definitive endoderm, cardiac as well as presomitic mesoderm by only modulating the bulk cell density and the concentration of the GSK3 inhibitor CHIR99021, a potent activator of the WNT pathway. The patterning process is modulated by a complex paracrine network, whose identity and mechanistic consequences are poorly understood. To study the underlying dynamics, we here applied mathematical modeling based on ordinary differential equations. We compared time-course data of early hPSC differentiation to increasingly complex model structures with incremental numbers of paracrine factors. Model simulations suggest at least three paracrine factors being required to recapitulate the experimentally observed differentiation kinetics. Feedback mechanisms from both undifferentiated and differentiated cells turned out to be crucial. Evidence from double knock-down experiments and secreted protein enrichment allowed us to hypothesize on the identity of two of the three predicted factors. From a practical perspective, the mathematical model predicts optimal settings for directing lineage-specific differentiation. This opens new avenues for rational stem cell bioprocessing in more advanced culture systems, e.g. in perfusion-fed bioreactors enabling cell therapies.


Assuntos
Diferenciação Celular/fisiologia , Modelos Teóricos , Células-Tronco Pluripotentes/citologia , Diferenciação Celular/efeitos dos fármacos , Humanos , Piridinas/farmacologia , Pirimidinas/farmacologia
12.
Biofabrication ; 10(3): 035005, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29578448

RESUMO

Research on human induced pluripotent stem cells (hiPSCs) is one of the fastest growing fields in biomedicine. Generated from patient's own somatic cells, hiPSCs can be differentiated towards all functional cell types and returned to the patient without immunological concerns. 3D printing of hiPSCs could enable the generation of functional organs for replacement therapies or realization of organ-on-chip systems for individualized medicine. Printing of living cells was demonstrated with immortalized cell lines, primary cells, and adult stem cells with different printing technologies and biomaterials. However, hiPSCs are more sensitive to handling procedures, in particular, when dissociated into single cells. Both pluripotency and directed differentiation are influenced by numerous environmental factors including culture media, biomaterials, and cell density. Notably, existing literature on the effect of applied biomaterials on pluripotency is rather ambiguous. In this study, laser bioprinting of undifferentiated hiPSCs in combination with different biomaterials was performed and the impact on cells' behavior, pluripotency, and differentiation was investigated. Our findings suggest that hiPSCs are indeed more sensitive to the applied biomaterials, but not to laser printing itself. With appropriate biomaterials, such as the hyaluronic acid based solutions applied in this study, hiPSCs can be successfully laser printed without losing their pluripotency.


Assuntos
Bioimpressão/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Materiais Biocompatíveis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Ácido Hialurônico/farmacologia , Hidrogéis , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Tinta
13.
Stem Cells Dev ; 27(3): 166-183, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29205106

RESUMO

The components of the cholinergic system are evolutionary very old and conserved molecules that are expressed in typical spatiotemporal patterns. They are involved in signaling in the nervous system, whereas their functions in nonneuronal tissues are hardly understood. Stem cells present an attractive cellular system to address functional issues. This study therefore compared human induced pluripotent stem cells (iPSCs; from cord blood endothelial cells), mesenchymal stromal cells derived from iPSCs (iPSC-MSCs), and bone marrow-derived MSCs (BM-MSCs) from up to 33 different human donors with respect to gene expressions of components of the cholinergic system. The status of cells was identified and characterized by the detection of cell surface antigens using flow cytometry. Acetylcholinesterase expression in iPSCs declined during their differentiation into MSCs and was comparably low in BM-MSCs. Butyrylcholinesterase was present in iPSCs, increased upon transition from the three-dimensional embryoid body phase into monolayer culture, and declined upon further differentiation into iPSC-MSCs. In BM-MSCs a notable butyrylcholinesterase expression could be detected in only four donors, but was elusive in other patient-derived samples. Different nicotinic acetylcholine receptor subunits were preferentially expressed in iPSCs and during early differentiation into iPSC-MSCs, low expression was detected in iPS-MSCs and in BM-MSCs. The m2 and m3 variants of muscarinic acetylcholine receptors were detected in all stem cell populations. In BM-MSCs, these gene expressions varied between donors. Together, these data reveal the differential expression of cholinergic signaling system components in stem cells from specific sources and suggest the utility of our approach to establish informative biomarkers.


Assuntos
Acetilcolinesterase/biossíntese , Células da Medula Óssea/enzimologia , Butirilcolinesterase/biossíntese , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/enzimologia , Células-Tronco Mesenquimais/enzimologia , Células da Medula Óssea/citologia , Proteínas Ligadas por GPI/biossíntese , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Mesenquimais/citologia , Transdução de Sinais
14.
Viruses ; 9(12)2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29257111

RESUMO

Cowpox virus (CPXV) is a zoonotic virus and endemic in wild rodent populations in Eurasia. Serological surveys in Europe have reported high prevalence in different vole and mouse species. Here, we report on experimental CPXV infections of bank voles (Myodes glareolus) from different evolutionary lineages with a spectrum of CPXV strains. All bank voles, independently of lineage, sex and age, were resistant to clinical signs following CPXV inoculation, and no virus shedding was detected in nasal or buccal swabs. In-contact control animals became only rarely infected. However, depending on the CPXV strain used, inoculated animals seroconverted and viral DNA could be detected preferentially in the upper respiratory tract. The highest antibody titers and virus DNA loads in the lungs were detected after inoculation with two strains from Britain and Finland. We conclude from our experiments that the role of bank voles as an efficient and exclusive CPXV reservoir seems questionable, and that CPXV may be maintained in most regions by other hosts, including other vole species. Further investigations are needed to identify factors that allow and modulate CPXV maintenance in bank voles and other potential reservoirs, which may also influence spill-over infections to accidental hosts.


Assuntos
Arvicolinae , Vírus da Varíola Bovina/crescimento & desenvolvimento , Varíola Bovina/patologia , Varíola Bovina/virologia , Reservatórios de Doenças , Resistência à Doença , Vetores de Doenças , Animais , Anticorpos Antivirais/sangue , Vírus da Varíola Bovina/isolamento & purificação , DNA Viral/sangue , Boca/virologia , Cavidade Nasal/virologia , Sistema Respiratório/virologia , Soroconversão
15.
Viruses ; 9(6)2017 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-28604604

RESUMO

Cowpox virus (CPXV) was considered as uniform species within the genus Orthopoxvirus (OPV). Previous phylogenetic analysis indicated that CPXV is polyphyletic and isolates may cluster into different clades with two of these clades showing genetic similarities to either variola (VARV) or vaccinia viruses (VACV). Further analyses were initiated to assess both the genetic diversity and the evolutionary background of circulating CPXVs. Here we report the full-length sequences of 20 CPXV strains isolated from different animal species and humans in Germany. A phylogenetic analysis of altogether 83 full-length OPV genomes confirmed the polyphyletic character of the species CPXV and suggested at least four different clades. The German isolates from this study mainly clustered into two CPXV-like clades, and VARV- and VACV-like strains were not observed. A single strain, isolated from a cotton-top tamarin, clustered distantly from all other CPXVs and might represent a novel and unique evolutionary lineage. The classification of CPXV strains into clades roughly followed their geographic origin, with the highest clade diversity so far observed for Germany. Furthermore, we found evidence for recombination between OPV clades without significant disruption of the observed clustering. In conclusion, this analysis markedly expands the number of available CPXV full-length sequences and confirms the co-circulation of several CPXV clades in Germany, and provides the first data about a new evolutionary CPXV lineage.


Assuntos
Vírus da Varíola Bovina/classificação , Variação Genética , Animais , Análise por Conglomerados , Varíola Bovina/virologia , Vírus da Varíola Bovina/genética , Vírus da Varíola Bovina/isolamento & purificação , Genoma Viral , Alemanha , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fenótipo , Filogenia , Recombinação Genética , Vaccinia virus/genética , Vírus da Varíola/genética
16.
Stem Cell Reports ; 8(2): 305-317, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28089668

RESUMO

Subtype-specific human cardiomyocytes (CMs) are valuable for basic and applied research. Induction of cardiomyogenesis and enrichment of nodal-like CMs was described for mouse pluripotent stem cells (mPSCs) in response to 1-ethyl-2-benzimidazolinone (EBIO), a chemical modulator of small-/intermediate-conductance Ca2+-activated potassium channels (SKs 1-4). Investigating EBIO in human pluripotent stem cells (PSCs), we have applied three independent differentiation protocols of low to high cardiomyogenic efficiency. Equivalent to mPSCs, timed EBIO supplementation during hPSC differentiation resulted in dose-dependent enrichment of up to 80% CMs, including an increase in nodal- and atrial-like phenotypes. However, our study revealed extensive EBIO-triggered cell loss favoring cardiac progenitor preservation and, subsequently, CMs with shortened action potentials. Proliferative cells were generally more sensitive to EBIO, presumably via an SK-independent mechanism. Together, EBIO did not promote cardiogenic differentiation of PSCs, opposing previous findings, but triggered lineage-selective survival at a cardiac progenitor stage, which we propose as a pharmacological strategy to modulate CM subtype composition.


Assuntos
Benzimidazóis/farmacologia , Agonistas dos Canais de Cálcio/farmacologia , Diferenciação Celular/efeitos dos fármacos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Biomarcadores , Diferenciação Celular/genética , Linhagem Celular , Linhagem da Célula , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Mesoderma/citologia , Mesoderma/efeitos dos fármacos , Mesoderma/embriologia , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/metabolismo
17.
Nat Commun ; 7: 13602, 2016 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-27934856

RESUMO

In vitro differentiation of human pluripotent stem cells (hPSCs) recapitulates early aspects of human embryogenesis, but the underlying processes are poorly understood and controlled. Here we show that modulating the bulk cell density (BCD: cell number per culture volume) deterministically alters anteroposterior patterning of primitive streak (PS)-like priming. The BCD in conjunction with the chemical WNT pathway activator CHIR99021 results in distinct paracrine microenvironments codifying hPSCs towards definitive endoderm, precardiac or presomitic mesoderm within the first 24 h of differentiation, respectively. Global gene expression and secretome analysis reveals that TGFß superfamily members, antagonist of Nodal signalling LEFTY1 and CER1, are paracrine determinants restricting PS progression. These data result in a tangible model disclosing how hPSC-released factors deflect CHIR99021-induced lineage commitment over time. By demonstrating a decisive, functional role of the BCD, we show its utility as a method to control lineage-specific differentiation. Furthermore, these findings have profound consequences for inter-experimental comparability, reproducibility, bioprocess optimization and scale-up.


Assuntos
Contagem de Células , Células-Tronco Pluripotentes/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Proteínas Wnt/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Análise Serial de Proteínas , Piridinas/farmacologia , Pirimidinas/farmacologia , RNA Interferente Pequeno , Transdução de Sinais/fisiologia , Transcriptoma , Fator de Crescimento Transformador beta/genética , Proteínas Wnt/genética
18.
Basic Res Cardiol ; 111(6): 68, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27743117

RESUMO

Human pluripotent stem cell (hPSC)-derived cardiomyocytes hold great potential for in vitro modeling of diseases like cardiomyopathies. Yet, knowledge about expression and functional impact of sarcomeric protein isoforms like the myosin heavy chain (MyHC) in hPSC-cardiomyocytes is scarce. We hypothesized that ventricular ß-MyHC expression alters contraction and calcium kinetics and drives morphological and electrophysiological differentiation towards ventricular-like cardiomyocytes. To address this, we (1) generated human embryonic stem cell-derived cardiomyocytes (hESC-CMs) that switched towards exclusive ß-MyHC, and (2) functionally and morphologically characterized these hESC-CMs at the single-cell level. MyHC-isoforms and functional properties were investigated during prolonged in vitro culture of cardiomyocytes in floating cardiac bodies (soft conditions) vs. culture on a stiff matrix. Using a specific anti-ß-MyHC and a newly generated anti-α-MyHC-antibody, we found individual cardiomyocytes grown in cardiac bodies to mostly express both α- and ß-MyHC-protein isoforms. Yet, 35 and 75 days of cultivation on laminin-coated glass switched 66 and 87 % of all cardiomyocytes to exclusively express ß-MyHC, respectively. Twitch contraction and calcium transients were faster for CMs on laminin-glass. Surprisingly, both parameters were only little affected by the MyHC-isoform, although hESC-CMs with only ß-MyHC had much lower ATP-turnover and tension cost, just as in human ventricular cardiomyocytes. Spontaneous contractions and no strict coupling of ß-MyHC to ventricular-like action potentials suggest that MyHC-isoform expression does not fully determine the hESC-CM differentiation status. Stiff substrate-induced pure ß-MyHC-protein expression in hESC-CMs, with several contractile parameters close to ventricular cardiomyocytes, provides a well-defined in vitro system for modeling of cardiomyopathies and drug screening approaches.


Assuntos
Técnicas de Cultura de Células/métodos , Miócitos Cardíacos/metabolismo , Cadeias Pesadas de Miosina/biossíntese , Miosinas Ventriculares/biossíntese , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Citometria de Fluxo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Microscopia Eletrônica de Transmissão , Miócitos Cardíacos/citologia , Reação em Cadeia da Polimerase , Isoformas de Proteínas , Reação em Cadeia da Polimerase em Tempo Real
19.
Stem Cells Transl Med ; 5(10): 1289-1301, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27369897

RESUMO

: The routine application of human pluripotent stem cells (hPSCs) and their derivatives in biomedicine and drug discovery will require the constant supply of high-quality cells by defined processes. Culturing hPSCs as cell-only aggregates in (three-dimensional [3D]) suspension has the potential to overcome numerous limitations of conventional surface-adherent (two-dimensional [2D]) cultivation. Utilizing single-use instrumented stirred-tank bioreactors, we showed that perfusion resulted in a more homogeneous culture environment and enabled superior cell densities of 2.85 × 106 cells per milliliter and 47% higher cell yields compared with conventional repeated batch cultures. Flow cytometry, quantitative reverse-transcriptase polymerase chain reaction, and global gene expression analysis revealed a high similarity across 3D suspension and 2D precultures, underscoring that matrix-free hPSC culture efficiently supports maintenance of pluripotency. Interestingly, physiological data and gene expression assessment indicated distinct changes of the cells' energy metabolism, suggesting a culture-induced switch from glycolysis to oxidative phosphorylation in the absence of hPSC differentiation. Our data highlight the plasticity of hPSCs' energy metabolism and provide clear physiological and molecular targets for process monitoring and further development. This study paves the way toward more efficient GMP-compliant cell production and underscores the enormous process development potential of hPSCs in suspension culture. SIGNIFICANCE: Human pluripotent stem cells (hPSCs) are a unique source for the, in principle, unlimited production of functional human cell types in vitro, which are of high value for therapeutic and industrial applications. This study applied single-use, clinically compliant bioreactor technology to develop advanced, matrix-free, and more efficient culture conditions for the mass production of hPSCs in scalable suspension culture. Using extensive analytical tools to compare established conditions with this novel culture strategy, unexpected physiological features of hPSCs were discovered. These data allow a more rational process development, providing significant progress in the field of translational stem cell research and medicine.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes/citologia , Humanos
20.
Vector Borne Zoonotic Dis ; 16(6): 431-3, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27159333

RESUMO

The article describes the isolation of a cowpox virus (CPXV) isolate originating from a horse. The skin of a foal, aborted in the third trimester, displayed numerous cutaneous papules. The histological examination showed A-type inclusion bodies within the lesion, typical for CPXV infections. This suspicion was confirmed by real-time PCR where various organs were analyzed. From skin samples, virus isolation was successfully performed. Afterwards, the whole genome of this new isolate "CPXV Amadeus" was sequenced by next-generation technology. Phylogenetic analysis clearly showed that "CPXV Amadeus" belongs to the "CPXV-like 1" clade. To our opinion, the study provides important additional information on rare accidental CPXV infections. From the natural hosts, the voles, species such as rats, cats, or different zoo animals are occasionally infected, but until now only two horse cases are described. In addition, there are new insights toward congenital CPXV infections.


Assuntos
Aborto Animal , Vírus da Varíola Bovina/isolamento & purificação , Varíola Bovina/veterinária , Feto/virologia , Doenças dos Cavalos/virologia , Animais , Varíola Bovina/patologia , Varíola Bovina/virologia , Vírus da Varíola Bovina/genética , Evolução Fatal , Genoma Viral , Doenças dos Cavalos/patologia , Cavalos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...