Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 19(10): e1010952, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37782669

RESUMO

Heterozygous de novo loss-of-function mutations in the gene expression regulator HNRNPU cause an early-onset developmental and epileptic encephalopathy. To gain insight into pathological mechanisms and lay the potential groundwork for developing targeted therapies, we characterized the neurophysiologic and cell-type-specific transcriptomic consequences of a mouse model of HNRNPU haploinsufficiency. Heterozygous mutants demonstrated global developmental delay, impaired ultrasonic vocalizations, cognitive dysfunction and increased seizure susceptibility, thus modeling aspects of the human disease. Single-cell RNA-sequencing of hippocampal and neocortical cells revealed widespread, yet modest, dysregulation of gene expression across mutant neuronal subtypes. We observed an increased burden of differentially-expressed genes in mutant excitatory neurons of the subiculum-a region of the hippocampus implicated in temporal lobe epilepsy. Evaluation of transcriptomic signature reversal as a therapeutic strategy highlights the potential importance of generating cell-type-specific signatures. Overall, this work provides insight into HNRNPU-mediated disease mechanisms and provides a framework for using single-cell RNA-sequencing to study transcriptional regulators implicated in disease.


Assuntos
Haploinsuficiência , Transcriptoma , Animais , Humanos , Camundongos , Haploinsuficiência/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Neurônios/metabolismo , RNA/metabolismo , Convulsões/genética , Transcriptoma/genética
2.
bioRxiv ; 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37873369

RESUMO

More than twenty recurrent missense gain-of-function (GOF) mutations have been identified in the sodium-activated potassium (KNa) channel gene KCNT1 in patients with severe developmental and epileptic encephalopathies (DEEs), most of which are resistant to current therapies. Defining the neuron types most vulnerable to KCNT1 GOF will advance our understanding of disease mechanisms and provide refined targets for precision therapy efforts. Here, we assessed the effects of heterozygous expression of a Kcnt1 GOF variant (Y777H) on KNa currents and neuronal physiology among cortical glutamatergic and GABAergic neurons in mice, including those expressing vasoactive intestinal polypeptide (VIP), somatostatin (SST), and parvalbumin (PV), to identify and model the pathogenic mechanisms of autosomal dominant KCNT1 GOF variants in DEEs. Although the Kcnt1-Y777H variant had no effects on glutamatergic or VIP neuron function, it increased subthreshold KNa currents in both SST and PV neurons but with opposite effects on neuronal output; SST neurons became hypoexcitable with a higher rheobase current and lower action potential (AP) firing frequency, whereas PV neurons became hyperexcitable with a lower rheobase current and higher AP firing frequency. Further neurophysiological and computational modeling experiments showed that the differential effects of the Y777H variant on SST and PV neurons are not likely due to inherent differences in these neuron types, but to an increased persistent sodium current in PV, but not SST, neurons. The Y777H variant also increased excitatory input onto, and chemical and electrical synaptic connectivity between, SST neurons. Together, these data suggest differential pathogenic mechanisms, both direct and compensatory, contribute to disease phenotypes, and provide a salient example of how a pathogenic ion channel variant can cause opposite functional effects in closely related neuron subtypes due to interactions with other ionic conductances.

3.
Front Cell Neurosci ; 17: 1175895, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275776

RESUMO

De novo mutations in GNB1, encoding the Gß1 subunit of G proteins, cause a neurodevelopmental disorder with global developmental delay and epilepsy, GNB1 encephalopathy. Here, we show that mice carrying a pathogenic mutation, K78R, recapitulate aspects of the disorder, including developmental delay and generalized seizures. Cultured mutant cortical neurons also display aberrant bursting activity on multi-electrode arrays. Strikingly, the antiepileptic drug ethosuximide (ETX) restores normal neuronal network behavior in vitro and suppresses spike-and-wave discharges (SWD) in vivo. ETX is a known blocker of T-type voltage-gated Ca2+ channels and G protein-coupled potassium (GIRK) channels. Accordingly, we present evidence that K78R results in a gain-of-function (GoF) effect by increasing the activation of GIRK channels in cultured neurons and a heterologous model (Xenopus oocytes)-an effect we show can be potently inhibited by ETX. This work implicates a GoF mechanism for GIRK channels in epilepsy, identifies a new mechanism of action for ETX in preventing seizures, and establishes this mouse model as a pre-clinical tool for translational research with predicative value for GNB1 encephalopathy.

4.
iScience ; 25(11): 105488, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36405774

RESUMO

Absence seizures, manifested by spike-wave discharges (SWD) in the electroencephalogram, display synchronous reciprocal excitation between the neocortex and thalamus. Recent studies have revealed that inhibitory neurons in the reticular thalamic (RT) nucleus and excitatory thalamocortical (TC) neurons are two subcortical players in generating SWD. However, the signals that drive SWD-related activity remain elusive. Here, we show that SWD predominately occurs during wakefulness in several mouse models of absence epilepsy. In more focused studies of Gnb1 mutant mice, we found that sensory input regulates SWD. Using in vivo recording, we demonstrate that TC cells are activated prior to the onset of SWD and then inhibited during SWD. On the contrary, RT cells are slightly inhibited prior to SWD, but are strongly activated during SWD. Furthermore, chemogenetic activation of TC cells leads to the enhancement of SWD. Together, our results indicate that sensory input can regulate SWD by activating the thalamocortical pathway.

5.
Cell Rep ; 40(3): 111085, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858542

RESUMO

Tuberous sclerosis complex (TSC) is a developmental disorder associated with epilepsy, autism, and cognitive impairment. Despite inactivating mutations in the TSC1 or TSC2 genes and hyperactive mechanistic target of rapamycin (mTOR) signaling, the mechanisms underlying TSC-associated neurological symptoms remain incompletely understood. Here we generate a Tsc1 conditional knockout (CKO) mouse model in which Tsc1 inactivation in late embryonic radial glia causes social and cognitive impairment and spontaneous seizures. Tsc1 depletion occurs in a subset of layer 2/3 cortical pyramidal neurons, leading to development of cytomegalic pyramidal neurons (CPNs) that mimic dysplastic neurons in human TSC, featuring abnormal dendritic and axonal overgrowth, enhanced glutamatergic synaptic transmission, and increased susceptibility to seizure-like activities. We provide evidence that enhanced synaptic excitation in CPNs contributes to cortical hyperexcitability and epileptogenesis. In contrast, astrocytic regulation of synapse formation and synaptic transmission remains unchanged after late embryonic radial glial Tsc1 inactivation, and astrogliosis evolves secondary to seizures.


Assuntos
Esclerose Tuberosa , Animais , Humanos , Camundongos , Células Piramidais , Convulsões , Esclerose Tuberosa/genética , Proteína 1 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética
6.
Brain ; 145(10): 3666-3680, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-35552612

RESUMO

While several studies have attributed the development of tumour-associated seizures to an excitatory-inhibitory imbalance, we have yet to resolve the spatiotemporal interplay between different types of neuron in glioma-infiltrated cortex. Herein, we combined methods for single unit analysis of microelectrode array recordings with wide-field optical mapping of Thy1-GCaMP pyramidal cells in an ex vivo acute slice model of diffusely infiltrating glioma. This enabled simultaneous tracking of individual neurons from both excitatory and inhibitory populations throughout seizure-like events. Moreover, our approach allowed for observation of how the crosstalk between these neurons varied spatially, as we recorded across an extended region of glioma-infiltrated cortex. In tumour-bearing slices, we observed marked alterations in single units classified as putative fast-spiking interneurons, including reduced firing, activity concentrated within excitatory bursts and deficits in local inhibition. These results were correlated with increases in overall excitability. Mechanistic perturbation of this system with the mTOR inhibitor AZD8055 revealed increased firing of putative fast-spiking interneurons and restoration of local inhibition, with concomitant decreases in overall excitability. Altogether, our findings suggest that diffusely infiltrating glioma affect the interplay between excitatory and inhibitory neuronal populations in a reversible manner, highlighting a prominent role for functional mechanisms linked to mTOR activation.


Assuntos
Glioma , Células Piramidais , Humanos , Potenciais de Ação/fisiologia , Células Piramidais/fisiologia , Neurônios/fisiologia , Convulsões , Serina-Treonina Quinases TOR
7.
JCI Insight ; 6(3)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33351789

RESUMO

Paucity of the glucose transporter-1 (Glut1) protein resulting from haploinsufficiency of the SLC2A1 gene arrests cerebral angiogenesis and disrupts brain function to cause Glut1 deficiency syndrome (Glut1 DS). Restoring Glut1 to Glut1 DS model mice prevents disease, but the precise cellular sites of action of the transporter, its temporal requirements, and the mechanisms linking scarcity of the protein to brain cell dysfunction remain poorly understood. Here, we show that Glut1 functions in a cell-autonomous manner in the cerebral microvasculature to affect endothelial tip cells and, thus, brain angiogenesis. Moreover, brain endothelial cell-specific Glut1 depletion not only triggers a severe neuroinflammatory response in the Glut1 DS brain, but also reduces levels of brain-derived neurotrophic factor (BDNF) and causes overt disease. Reduced BDNF correlated with fewer neurons in the Glut1 DS brain. Controlled depletion of the protein demonstrated that brain pathology and disease severity was greatest when Glut1 scarcity was induced neonatally, during brain angiogenesis. Reducing Glut1 at later stages had mild or little effect. Our results suggest that targeting brain endothelial cells during early development is important to ensure proper brain angiogenesis, prevent neuroinflammation, maintain BDNF levels, and preserve neuron numbers. This requirement will be essential for any disease-modifying therapeutic strategy for Glut1 DS.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Transportador de Glucose Tipo 1/deficiência , Transportador de Glucose Tipo 1/metabolismo , Proteínas de Transporte de Monossacarídeos/deficiência , Animais , Animais Recém-Nascidos , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Encéfalo/patologia , Fator Neurotrófico Derivado do Encéfalo/deficiência , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Erros Inatos do Metabolismo dos Carboidratos/genética , Erros Inatos do Metabolismo dos Carboidratos/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Técnicas de Silenciamento de Genes , Transportador de Glucose Tipo 1/genética , Haploinsuficiência , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Neovascularização Fisiológica/genética , Neurônios/metabolismo , Neurônios/patologia , Fenótipo
8.
eNeuro ; 8(2)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33372033

RESUMO

Developmental epileptic encephalopathies (DEEs) are severe seizure disorders that occur in infants and young children, characterized by developmental delay, cognitive decline, and early mortality. Recent efforts have identified a wide variety of genetic variants that cause DEEs. Among these, variants in the DNM1 gene have emerged as definitive causes of DEEs, including infantile spasms and Lennox-Gastaut syndrome. A mouse model of Dnm1-associated DEE, known as "Fitful" (Dnm1Ftfl ), recapitulates key features of the disease, including spontaneous seizures, early lethality, and neuronal degeneration. Previous work showed that DNM1 is a key regulator of synaptic vesicle (SV) endocytosis and synaptic transmission and suggested that inhibitory neurotransmission may be more reliant on DNM1 function than excitatory transmission. The Dnm1Ftfl variant is thought to encode a dominant negative DNM1 protein; however, the effects of the Dnm1Ftfl variant on synaptic transmission are largely unknown. To understand these synaptic effects, we recorded from pairs of cultured mouse cortical neurons and characterized all four major connection types [excitation of excitation (E-E), inhibition of inhibition (I-I), E-I, I-E]. Miniature and spontaneous EPSCs and IPSCs were larger, but less frequent, at all Dnm1Ftfl synaptic types, and Dnm1Ftfl neurons had reduced expression of excitatory and inhibitory SV markers. Baseline evoked transmission, however, was reduced only at inhibitory synapses onto excitatory neurons, because of a smaller pool of releasable SVs. In addition to these synaptic alterations, Dnm1Ftfl neurons degenerated later in development, although their activity levels were reduced, suggesting that Dnm1Ftfl may impair synaptic transmission and neuronal health through distinct mechanisms.


Assuntos
Síndrome de Lennox-Gastaut , Espasmos Infantis , Animais , Modelos Animais de Doenças , Dinamina I/genética , Dinamina I/metabolismo , Camundongos , Espasmos Infantis/genética , Transmissão Sináptica
9.
Neurobiol Dis ; 148: 105220, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33301879

RESUMO

Mouse models have made innumerable contributions to understanding the genetic basis of neurological disease and pathogenic mechanisms and to therapy development. Here we consider the current state of mouse genetic models of Developmental and Epileptic Encephalopathy (DEE), representing a set of rare but devastating and largely intractable childhood epilepsies. By examining the range of mouse lines available in this rapidly moving field and by detailing both expected and unusual features in representative examples, we highlight lessons learned in an effort to maximize the full potential of this powerful resource for preclinical studies.


Assuntos
Modelos Animais de Doenças , Camundongos , Espasmos Infantis/genética , Espasmos Infantis/fisiopatologia , Animais , Síndromes Epilépticas/genética , Síndromes Epilépticas/fisiopatologia , Mutação com Ganho de Função , Humanos , Lactente , Mutação com Perda de Função , Mutação de Sentido Incorreto , Fenótipo , Convulsões/genética , Convulsões/fisiopatologia
10.
Cell Rep ; 33(4): 108303, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33113364

RESUMO

Gain-of-function (GOF) variants in K+ channels cause severe childhood epilepsies, but there are no mechanisms to explain how increased K+ currents lead to network hyperexcitability. Here, we introduce a human Na+-activated K+ (KNa) channel variant (KCNT1-Y796H) into mice and, using a multiplatform approach, find motor cortex hyperexcitability and early-onset seizures, phenotypes strikingly similar to those of human patients. Although the variant increases KNa currents in cortical excitatory and inhibitory neurons, there is an increase in the KNa current across subthreshold voltages only in inhibitory neurons, particularly in those with non-fast-spiking properties, resulting in inhibitory-neuron-specific impairments in excitability and action potential (AP) generation. We further observe evidence of synaptic rewiring, including increases in homotypic synaptic connectivity, accompanied by network hyperexcitability and hypersynchronicity. These findings support inhibitory-neuron-specific mechanisms in mediating the epileptogenic effects of KCNT1 channel GOF, offering cell-type-specific currents and effects as promising targets for therapeutic intervention.


Assuntos
Potenciais de Ação/genética , Epilepsia/genética , Neurônios GABAérgicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio Ativados por Sódio/metabolismo , Convulsões/genética , Animais , Modelos Animais de Doenças , Humanos , Camundongos
11.
Neuron ; 108(1): 193-208.e9, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32853550

RESUMO

The mammalian genome has hundreds of nuclear-encoded tRNAs, but the contribution of individual tRNA genes to cellular and organismal function remains unknown. Here, we demonstrate that mutations in a neuronally enriched arginine tRNA, n-Tr20, increased seizure threshold and altered synaptic transmission. n-Tr20 expression also modulated seizures caused by an epilepsy-linked mutation in Gabrg2, a gene encoding a GABAA receptor subunit. Loss of n-Tr20 altered translation initiation by activating the integrated stress response and suppressing mTOR signaling, the latter of which may contribute to altered neurotransmission in mutant mice. Deletion of a highly expressed isoleucine tRNA similarly altered these signaling pathways in the brain, suggesting that regulation of translation initiation is a conserved response to tRNA loss. Our data indicate that loss of a single member of a tRNA family results in multiple cellular phenotypes, highlighting the disease-causing potential of tRNA mutations.


Assuntos
Neurônios/metabolismo , RNA de Transferência de Arginina/genética , Convulsões/genética , Transmissão Sináptica/genética , Animais , Eletrochoque/efeitos adversos , Antagonistas de Receptores de GABA-A/efeitos adversos , Camundongos , Pentilenotetrazol/efeitos adversos , Iniciação Traducional da Cadeia Peptídica/genética , RNA de Transferência de Isoleucina/genética , RNA-Seq , Receptores de GABA-A/genética , Convulsões/induzido quimicamente , Convulsões/etiologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
12.
Brain ; 143(7): 2039-2057, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32577763

RESUMO

NMDA receptors play crucial roles in excitatory synaptic transmission. Rare variants in GRIN2A encoding the GluN2A subunit are associated with a spectrum of disorders, ranging from mild speech and language delay to intractable neurodevelopmental disorders, including but not limited to developmental and epileptic encephalopathy. A de novo missense variant, p.Ser644Gly, was identified in a child with this disorder, and Grin2a knock-in mice were generated to model and extend understanding of this intractable childhood disease. Homozygous and heterozygous mutant mice exhibited altered hippocampal morphology at 2 weeks of age, and all homozygotes exhibited lethal tonic-clonic seizures by mid-third week. Heterozygous adults displayed susceptibility to induced generalized seizures, hyperactivity, repetitive and reduced anxiety behaviours, plus several unexpected features, including significant resistance to electrically-induced limbic seizures and to pentylenetetrazole induced tonic-clonic seizures. Multielectrode recordings of neuronal networks revealed hyperexcitability and altered bursting and synchronicity. In heterologous cells, mutant receptors had enhanced NMDA receptor agonist potency and slow deactivation following rapid removal of glutamate, as occurs at synapses. NMDA receptor-mediated synaptic currents in heterozygous hippocampal slices also showed a prolonged deactivation time course. Standard anti-epileptic drug monotherapy was ineffective in the patient. Introduction of NMDA receptor antagonists was correlated with a decrease in seizure burden. Chronic treatment of homozygous mouse pups with NMDA receptor antagonists significantly delayed the onset of lethal seizures but did not prevent them. These studies illustrate the power of using multiple experimental modalities to model and test therapies for severe neurodevelopmental disorders, while revealing significant biological complexities associated with GRIN2A developmental and epileptic encephalopathy.


Assuntos
Modelos Animais de Doenças , Epilepsia Generalizada/tratamento farmacológico , Epilepsia Generalizada/genética , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Receptores de N-Metil-D-Aspartato/genética , Animais , Dextrometorfano/uso terapêutico , Epilepsia Generalizada/patologia , Técnicas de Introdução de Genes , Humanos , Lactente , Masculino , Memantina/uso terapêutico , Camundongos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia
13.
J Exp Med ; 217(8)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32484501

RESUMO

Excessive excitation is hypothesized to cause motoneuron (MN) degeneration in amyotrophic lateral sclerosis (ALS), but actual proof of hyperexcitation in vivo is missing, and trials based on this concept have failed. We demonstrate, by in vivo single-MN electrophysiology, that, contrary to expectations, excitatory responses evoked by sensory and brainstem inputs are reduced in MNs of presymptomatic mutSOD1 mice. This impairment correlates with disrupted postsynaptic clustering of Homer1b, Shank, and AMPAR subunits. Synaptic restoration can be achieved by activation of the cAMP/PKA pathway, by either intracellular injection of cAMP or DREADD-Gs stimulation. Furthermore, we reveal, through independent control of signaling and excitability allowed by multiplexed DREADD/PSAM chemogenetics, that PKA-induced restoration of synapses triggers an excitation-dependent decrease in misfolded SOD1 burden and autophagy overload. In turn, increased MN excitability contributes to restoring synaptic structures. Thus, the decrease of excitation to MN is an early but reversible event in ALS. Failure of the postsynaptic site, rather than hyperexcitation, drives disease pathobiochemistry.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Neurônios Motores/enzimologia , Neuroproteção , Transdução de Sinais , Sinapses/enzimologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Proteínas Quinases Dependentes de AMP Cíclico/genética , Humanos , Camundongos , Camundongos Transgênicos , Neurônios Motores/patologia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Sinapses/genética , Sinapses/patologia
14.
Mol Ther ; 28(7): 1706-1716, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32353324

RESUMO

Developmental and epileptic encephalopathy (DEE) associated with de novo variants in the gene encoding dynamin-1 (DNM1) is a severe debilitating disease with no pharmacological remedy. Like most genetic DEEs, the majority of DNM1 patients suffer from therapy-resistant seizures and comorbidities such as intellectual disability, developmental delay, and hypotonia. We tested RNAi gene therapy in the Dnm1 fitful mouse model of DEE using a Dnm1-targeted therapeutic microRNA delivered by a self-complementary adeno-associated virus vector. Untreated or control-injected fitful mice have growth delay, severe ataxia, and lethal tonic-clonic seizures by 3 weeks of age. These major impairments are mitigated following a single treatment in newborn mice, along with key underlying cellular features including gliosis, cell death, and aberrant neuronal metabolic activity typically associated with recurrent seizures. Our results underscore the potential for RNAi gene therapy to treat DNM1 disease and other genetic DEEs where treatment would require inhibition of the pathogenic gene product.


Assuntos
Dinamina I/genética , Síndromes Epilépticas/terapia , Terapia Genética/métodos , MicroRNAs/genética , Animais , Animais Recém-Nascidos , Dependovirus/genética , Modelos Animais de Doenças , Síndromes Epilépticas/genética , Síndromes Epilépticas/patologia , Vetores Genéticos/administração & dosagem , Humanos , Infusões Intraventriculares , Camundongos , MicroRNAs/administração & dosagem , Interferência de RNA , Resultado do Tratamento
15.
Neurobiol Dis ; 137: 104758, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31978606

RESUMO

Mutations in the X-linked gene IQSEC2 are associated with multiple cases of epilepsy, epileptic encephalopathy, intellectual disability and autism spectrum disorder, the mechanistic understanding and successful treatment of which remain a significant challenge in IQSEC2 and related neurodevelopmental genetic diseases. To investigate disease etiology, we studied behaviors and synaptic function in IQSEC2 deficient mice. Hemizygous Iqsec2 null males exhibit growth deficits, hyperambulation and hyperanxiety phenotypes. Adult hemizygotes experience lethal spontaneous seizures, but paradoxically have a significantly increased threshold to electrically induced limbic seizures and relative resistance to chemically induced seizures. Although there are no gross defects in brain morphology, hemizygotes exhibit stark hippocampal reactive astrogliosis. Electrophysiological recordings of hippocampal neurons reveal increased excitatory drive specifically onto interneurons, and significant alterations in intrinsic electrical properties specific to the interneuron population. As they age, hemizygotes also develop an increased abundance of parvalbumin-positive interneurons in the hippocampus, neurons in which IQSEC2 is expressed in addition to the excitatory neurons. These findings point to a novel role of IQSEC2 in hippocampal interneuron synaptic function and development with implications for a class of intractable neurodevelopmental diseases.


Assuntos
Transtorno do Espectro Autista/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Hipocampo/metabolismo , Mutação/genética , Proteínas do Tecido Nervoso/genética , Animais , Modelos Animais de Doenças , Epilepsia/fisiopatologia , Hipocampo/fisiopatologia , Deficiência Intelectual/genética , Interneurônios/fisiologia , Camundongos Knockout , Transtornos do Neurodesenvolvimento/genética
16.
Epilepsy Curr ; 20(1_suppl): 14S-22S, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31937124

RESUMO

Area II of the 2014 Epilepsy Research Benchmarks aims to establish goals for preventing the development and progression of epilepsy. In this review, we will highlight key advances in Area II since the last summary of research progress and opportunities was published in 2016. We also highlight areas of investigation that began to develop before 2016 and in which additional progress has been made more recently.

17.
Neurobiol Dis ; 134: 104632, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31678406

RESUMO

ARFGEF1 encodes a guanine exchange factor involved in intracellular vesicle trafficking, and is a candidate gene for childhood genetic epilepsies. To model ARFGEF1 haploinsufficiency observed in a recent Lennox Gastaut Syndrome patient, we studied a frameshift mutation (Arfgef1fs) in mice. Arfgef1fs/+ pups exhibit signs of developmental delay, and Arfgef1fs/+ adults have a significantly decreased threshold to induced seizures but do not experience spontaneous seizures. Histologically, the Arfgef1fs/+ brain exhibits a disruption in the apical lining of the dentate gyrus and altered spine morphology of deep layer neurons. In primary hippocampal neuron culture, dendritic surface and synaptic but not total GABAA receptors (GABAAR) are reduced in Arfgef1fs/+ neurons with an accompanying decrease in the number of GABAAR-containing recycling endosomes in cell body. Arfgef1fs/+ neurons also display differences in the relative ratio of Arf6+:Rab11+:TrfR+ recycling endosomes. Although the GABAAR-containing early endosomes in Arfgef1fs/+ neurons are comparable to wildtype, Arfgef1fs/+ neurons show an increase in the number of GABAAR-containing lysosomes in dendrite and cell body. Together, the altered endosome composition and decreased neuronal surface GABAAR results suggests a mechanism whereby impaired neuronal inhibition leads to seizure susceptibility.


Assuntos
Endossomos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Neurônios/metabolismo , Receptores de GABA-A/metabolismo , Convulsões/metabolismo , Animais , Encéfalo/metabolismo , Pré-Escolar , Fatores de Troca do Nucleotídeo Guanina/genética , Haploinsuficiência , Humanos , Lactente , Síndrome de Lennox-Gastaut/genética , Masculino , Proteínas de Membrana , Camundongos , Camundongos Knockout
18.
PLoS Comput Biol ; 15(8): e1007227, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31425505

RESUMO

RNA-protein interaction plays important roles in post-transcriptional regulation. Recent advancements in cross-linking and immunoprecipitation followed by sequencing (CLIP-seq) technologies make it possible to detect the binding peaks of a given RNA binding protein (RBP) at transcriptome scale. However, it is still challenging to predict the functional consequences of RBP binding peaks. In this study, we propose the Protein-RNA Association Strength (PRAS), which integrates the intensities and positions of the binding peaks of RBPs for functional mRNA targets prediction. We illustrate the superiority of PRAS over existing approaches on predicting the functional targets of two related but divergent CELF (CUGBP, ELAV-like factor) RBPs in mouse brain and muscle. We also demonstrate the potential of PRAS for wide adoption by applying it to the enhanced CLIP-seq (eCLIP) datasets of 37 RNA decay related RBPs in two human cell lines. PRAS can be utilized to investigate any RBPs with available CLIP-seq peaks. PRAS is freely available at http://ouyanglab.jax.org/pras/.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação/estatística & dados numéricos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Software , Animais , Sequência de Bases , Sítios de Ligação/genética , Encéfalo/metabolismo , Proteínas CELF/genética , Proteínas CELF/metabolismo , Biologia Computacional , Bases de Dados de Proteínas , Perfilação da Expressão Gênica , Células Hep G2 , Humanos , Células K562 , Camundongos , Músculos/metabolismo , Proteínas de Ligação a RNA/genética
19.
PLoS Comput Biol ; 14(10): e1006506, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30273353

RESUMO

Here we present an open-source R package 'meaRtools' that provides a platform for analyzing neuronal networks recorded on Microelectrode Arrays (MEAs). Cultured neuronal networks monitored with MEAs are now being widely used to characterize in vitro models of neurological disorders and to evaluate pharmaceutical compounds. meaRtools provides core algorithms for MEA spike train analysis, feature extraction, statistical analysis and plotting of multiple MEA recordings with multiple genotypes and treatments. meaRtools functionality covers novel solutions for spike train analysis, including algorithms to assess electrode cross-correlation using the spike train tiling coefficient (STTC), mutual information, synchronized bursts and entropy within cultured wells. Also integrated is a solution to account for bursts variability originating from mixed-cell neuronal cultures. The package provides a statistical platform built specifically for MEA data that can combine multiple MEA recordings and compare extracted features between different genetic models or treatments. We demonstrate the utilization of meaRtools to successfully identify epilepsy-like phenotypes in neuronal networks from Celf4 knockout mice. The package is freely available under the GPL license (GPL> = 3) and is updated frequently on the CRAN web-server repository. The package, along with full documentation can be downloaded from: https://cran.r-project.org/web/packages/meaRtools/.


Assuntos
Potenciais de Ação/fisiologia , Biologia Computacional/métodos , Neurônios/fisiologia , Software , Algoritmos , Animais , Células Cultivadas , Eletrofisiologia , Camundongos , Camundongos Knockout , Microeletrodos
20.
Nature ; 543(7645): 438-442, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28199306

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) is a central regulator of cell growth that responds to diverse environmental signals and is deregulated in many human diseases, including cancer and epilepsy. Amino acids are a key input to this system, and act through the Rag GTPases to promote the translocation of mTORC1 to the lysosomal surface, its site of activation. Multiple protein complexes regulate the Rag GTPases in response to amino acids, including GATOR1, a GTPase activating protein for RAGA, and GATOR2, a positive regulator of unknown molecular function. Here we identify a protein complex (KICSTOR) that is composed of four proteins, KPTN, ITFG2, C12orf66 and SZT2, and that is required for amino acid or glucose deprivation to inhibit mTORC1 in cultured human cells. In mice that lack SZT2, mTORC1 signalling is increased in several tissues, including in neurons in the brain. KICSTOR localizes to lysosomes; binds and recruits GATOR1, but not GATOR2, to the lysosomal surface; and is necessary for the interaction of GATOR1 with its substrates, the Rag GTPases, and with GATOR2. Notably, several KICSTOR components are mutated in neurological diseases associated with mutations that lead to hyperactive mTORC1 signalling. Thus, KICSTOR is a lysosome-associated negative regulator of mTORC1 signalling, which, like GATOR1, is mutated in human disease.


Assuntos
Proteínas de Transporte/metabolismo , Lisossomos/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Aminoácidos/metabolismo , Animais , Proteínas de Transporte/química , Proteínas de Transporte/genética , Linhagem Celular , Feminino , Proteínas Ativadoras de GTPase , Glucose/deficiência , Glucose/metabolismo , Humanos , Cadeias alfa de Integrinas , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Ligação Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Especificidade por Substrato , Serina-Treonina Quinases TOR/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...