Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38293172

RESUMO

Our perception of how objects are laid out in visual scenes is remarkably stable, despite rapid shifts in the patterns of light that fall on the retina with each saccade. One mechanism that may help establish perceptual stability is border ownership assignment. Studies in macaque area V2 have identified border ownership neurons that signal which side of a border belongs to a foreground surface. This signal persists for hundreds of milliseconds after border ownership has been rendered ambiguous by deleting the stimulus features that distinguish foreground from background. Remarkably, this signal survives eye movements: border ownership neurons also exhibit border ownership signals de novo when an eye movement places the newly ambiguous border within their receptive field. The grouping cell hypothesis proposes the existence of hypothetical grouping cells in a downstream brain area. These cells would compute persistent proto-object representations and therefore have the properties to endow cells in upstream brain areas with selectivity for border ownership. Such grouping cells have been predicted to show a centripetal and persistent pattern of preferred side of ownership for a border placed parallel to the perimeter of their classical receptive field, and such a centripetal ownership preference pattern should also occur de novo in these same cells if an ambiguous border lands in their receptive field after a saccade. It is unknown if grouping cells exist. Here we used laminar multielectrodes in area V4 - the main source of feedback to V2 - of behaving macaques to determine whether such grouping cells exist. Consistent with the model prediction we find a substantial population of neurons with these properties, in all laminar compartments, and they exhibit a response latency that is short enough to act as the source that endows neurons in V2 with selectivity for border ownership. While grouping cell activity provides information about the location of foreground surfaces, these neurons are, counterintuitively, not as strongly tuned for luminance contrast polarity, a feature of those surfaces, as are border ownership cells. Our data suggest a division of labor in which these newly discovered grouping cells provide spatiotemporal continuity of segmented surfaces whereas border ownership cells link this location information with surface features such as luminance contrast.

2.
Elife ; 122023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37067528

RESUMO

The cortical column is one of the fundamental computational circuits in the brain. In order to understand the role neurons in different layers of this circuit play in cortical function it is necessary to identify the boundaries that separate the laminar compartments. While histological approaches can reveal ground truth they are not a practical means of identifying cortical layers in vivo. The gold standard for identifying laminar compartments in electrophysiological recordings is current-source density (CSD) analysis. However, laminar CSD analysis requires averaging across reliably evoked responses that target the input layer in cortex, which may be difficult to generate in less well-studied cortical regions. Further, the analysis can be susceptible to noise on individual channels resulting in errors in assigning laminar boundaries. Here, we have analyzed linear array recordings in multiple cortical areas in both the common marmoset and the rhesus macaque. We describe a pattern of laminar spike-field phase relationships that reliably identifies the transition between input and deep layers in cortical recordings from multiple cortical areas in two different non-human primate species. This measure corresponds well to estimates of the location of the input layer using CSDs, but does not require averaging or specific evoked activity. Laminar identity can be estimated rapidly with as little as a minute of ongoing data and is invariant to many experimental parameters. This method may serve to validate CSD measurements that might otherwise be unreliable or to estimate laminar boundaries when other methods are not practical.


Assuntos
Encéfalo , Fenômenos Eletrofisiológicos , Animais , Macaca mulatta
4.
Elife ; 102021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34845986

RESUMO

To understand a visual scene, the brain segregates figures from background by assigning borders to foreground objects. Neurons in primate visual cortex encode which object owns a border (border ownership), but the underlying circuitry is not understood. Here, we used multielectrode probes to record from border ownership-selective units in different layers in macaque visual area V4 to study the laminar organization and timing of border ownership selectivity. We find that border ownership selectivity occurs first in deep layer units, in contrast to spike latency for small stimuli in the classical receptive field. Units on the same penetration typically share the preferred side of border ownership, also across layers, similar to orientation preference. Units are often border ownership-selective for a range of border orientations, where the preferred sides of border ownership are systematically organized in visual space. Together our data reveal a columnar organization of border ownership in V4 where the earliest border ownership signals are not simply inherited from upstream areas, but computed by neurons in deep layers, and may thus be part of signals fed back to upstream cortical areas or the oculomotor system early after stimulus onset. The finding that preferred border ownership is clustered and can cover a wide range of spatially contiguous locations suggests that the asymmetric context integrated by these neurons is provided in a systematically clustered manner, possibly through corticocortical feedback and horizontal connections.


To understand a visual scene, the brain needs to identify objects and distinguish them from background. A border marks the transition from object to background, but to differentiate which side of the border belongs to the object and which to background, the brain must integrate information across space. An early signature of this computation is that brain cells signal which side of a border is 'owned' by an object, also known as border ownership. But how the brain computes border ownership remains unknown. The optic nerve is a cable-like group of nerve cells that transmits information from the eye to the brain's visual processing areas and into the visual cortex. This flow of information is often described as traveling in a feedforward direction, away from the eyes to progressively more specialized areas in the visual cortex. However, there are also numerous feedback connections in the brain, running backward from more specialized to less specialized cortical areas. To better understand the role of these feedforward and feedback circuits in the visual processing of object borders, Franken and Reynolds made use of their stereotyped projection patterns across the cortex layers. Feedforward connections terminate in the middle layers of a cortical area, whereas feedback connections terminate in upper and lower layers. Since time is required for information to traverse the cortical layers, dissecting the timing of border ownership signals may reveal if border ownership is computed in a feedforward or feedback manner. To find out more, electrodes were used to record neural activity in the upper, middle and lower layers of the visual cortex of two rhesus monkeys as they were presented with a set of abstract scenes composed of simple shapes on a background. This revealed that cells signaling border ownership in deep layers of the cortex did so before the signals appeared in the middle layer. This suggests that feedback rather than feedforward is required to compute border ownership. Moreover, Franken and Reynolds found evidence that cells that prefer the same side of border ownership are clustered in columns, showing how these neural circuits are organized within the visual cortex. In summary, Franken and Reynolds found that the circuits of the primate brain that compute border ownership occur as columns, in which cells in deep layers signal border ownership first, suggesting that border ownership relies on feedback from more specialized areas. A better understanding of how feedback in the brain works to process visual information helps us appreciate what happens when these systems are impaired.


Assuntos
Macaca mulatta/fisiologia , Neurônios/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Córtex Visual/fisiologia , Animais , Masculino
5.
Elife ; 102021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34121662

RESUMO

Locomotion generates adventitious sounds which enable detection and localization of predators and prey. Such sounds contain brisk changes or transients in amplitude. We investigated the hypothesis that ill-understood temporal specializations in binaural circuits subserve lateralization of such sound transients, based on different time of arrival at the ears (interaural time differences, ITDs). We find that Lateral Superior Olive (LSO) neurons show exquisite ITD-sensitivity, reflecting extreme precision and reliability of excitatory and inhibitory postsynaptic potentials, in contrast to Medial Superior Olive neurons, traditionally viewed as the ultimate ITD-detectors. In vivo, inhibition blocks LSO excitation over an extremely short window, which, in vitro, required synaptically evoked inhibition. Light and electron microscopy revealed inhibitory synapses on the axon initial segment as the structural basis of this observation. These results reveal a neural vetoing mechanism with extreme temporal and spatial precision and establish the LSO as the primary nucleus for binaural processing of sound transients.


Assuntos
Neurônios/fisiologia , Núcleo Olivar , Localização de Som/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Gerbillinae , Glicina/metabolismo , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Núcleo Olivar/citologia , Núcleo Olivar/fisiologia
6.
Nat Neurosci ; 23(12): 1629-1636, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32807948

RESUMO

Recent success in identifying gene-regulatory elements in the context of recombinant adeno-associated virus vectors has enabled cell-type-restricted gene expression. However, within the cerebral cortex these tools are largely limited to broad classes of neurons. To overcome this limitation, we developed a strategy that led to the identification of multiple new enhancers to target functionally distinct neuronal subtypes. By investigating the regulatory landscape of the disease gene Scn1a, we discovered enhancers selective for parvalbumin (PV) and vasoactive intestinal peptide-expressing interneurons. Demonstrating the functional utility of these elements, we show that the PV-specific enhancer allowed for the selective targeting and manipulation of these neurons across vertebrate species, including humans. Finally, we demonstrate that our selection method is generalizable and characterizes additional PV-specific enhancers with exquisite specificity within distinct brain regions. Altogether, these viral tools can be used for cell-type-specific circuit manipulation and hold considerable promise for use in therapeutic interventions.


Assuntos
Dependovirus/genética , Vetores Genéticos/genética , Interneurônios/fisiologia , Animais , Callithrix , Córtex Cerebral/citologia , Feminino , Humanos , Macaca mulatta , Camundongos , Camundongos Endogâmicos C57BL , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Neurônios , Parvalbuminas/fisiologia , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie , Peptídeo Intestinal Vasoativo/fisiologia
7.
Elife ; 72018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29901438

RESUMO

The brainstem's lateral superior olive (LSO) is thought to be crucial for localizing high-frequency sounds by coding interaural sound level differences (ILD). Its neurons weigh contralateral inhibition against ipsilateral excitation, making their firing rate a function of the azimuthal position of a sound source. Since the very first in vivo recordings, LSO principal neurons have been reported to give sustained and temporally integrating 'chopper' responses to sustained sounds. Neurons with transient responses were observed but largely ignored and even considered a sign of pathology. Using the Mongolian gerbil as a model system, we have obtained the first in vivo patch clamp recordings from labeled LSO neurons and find that principal LSO neurons, the most numerous projection neurons of this nucleus, only respond at sound onset and show fast membrane features suggesting an importance for timing. These results provide a new framework to interpret previously puzzling features of this circuit.


Assuntos
Potenciais de Ação/fisiologia , Vias Auditivas/fisiologia , Gerbillinae/fisiologia , Núcleo Olivar/fisiologia , Células Receptoras Sensoriais/fisiologia , Localização de Som/fisiologia , Estimulação Acústica/métodos , Animais , Eletrodos Implantados , Feminino , Gerbillinae/anatomia & histologia , Lisina/análogos & derivados , Lisina/química , Masculino , Núcleo Olivar/anatomia & histologia , Núcleo Olivar/citologia , Técnicas de Patch-Clamp , Células Receptoras Sensoriais/citologia , Coloração e Rotulagem/métodos
8.
World Neurosurg ; 101: 816.e1-816.e3, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28254591

RESUMO

BACKGROUND: Spontaneous intracranial hypotension syndrome results from spontaneous spinal cerebrospinal fluid (CSF) leaks. The first treatment of choice consists of lumbar epidural blood patching. If this fails, further imaging is mandatory to explore the possibility of targeted therapy. CASE DESCRIPTION: We describe a case of a 50-year-old woman who developed spontaneous intracranial hypotension after minor blunt cervical trauma, complicated with bilateral subdural hematomas. Two lumbar epidural blood patches were unsuccessful. Magnetic resonance imaging with intrathecal gadolinium revealed a CSF leak at the C1-C2 level. A targeted blood patch via a percutaneous high thoracic epidural approach was performed, and symptoms disappeared in the immediate postoperative period with a regression of the subdural hematomas on subsequent imaging. CONCLUSIONS: A targeted epidural blood patch using an epidural catheter represents an elegant approach to a CSF leak at the C1-C2 region and can be successful in treating patients with severe intracranial hypotension syndrome.


Assuntos
Placa de Sangue Epidural/métodos , Vazamento de Líquido Cefalorraquidiano/diagnóstico por imagem , Vazamento de Líquido Cefalorraquidiano/terapia , Hipotensão Intracraniana/diagnóstico por imagem , Hipotensão Intracraniana/terapia , Vazamento de Líquido Cefalorraquidiano/etiologia , Vértebras Cervicais/diagnóstico por imagem , Feminino , Humanos , Hipotensão Intracraniana/etiologia , Pessoa de Meia-Idade , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/terapia
9.
Front Neural Circuits ; 10: 69, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27605909

RESUMO

The lateral nucleus of the trapezoid body (LNTB) is a prominent nucleus in the superior olivary complex in mammals including humans. Its physiology in vivo is poorly understood due to a paucity of recordings. It is thought to provide a glycinergic projection to the medial superior olive (MSO) with an important role in binaural processing and sound localization. We combined in vivo patch clamp recordings with labeling of individual neurons in the Mongolian gerbil. Labeling of the recorded neurons allowed us to relate physiological properties to anatomy at the light and electron microscopic level. We identified a population of quite dorsally located neurons with surprisingly large dendritic trees on which most of the synaptic input impinges. In most neurons, one or more of these dendrites run through and are then medial to the MSO. These neurons were often binaural and could even show sensitivity to interaural time differences (ITDs) of stimulus fine structure or envelope. Moreover, a subpopulation showed enhanced phase-locking to tones delivered in the tuning curve tail. We propose that these neurons constitute the gerbil main LNTB (mLNTB). In contrast, a smaller sample of neurons was identified that was located more ventrally and that we designate to be in posteroventral LNTB (pvLNTB). These cells receive large somatic excitatory terminals from globular bushy cells. We also identified previously undescribed synaptic inputs from the lateral superior olive. pvLNTB neurons are usually monaural, display a primary-like-with-notch response to ipsilateral short tones at CF and can phase-lock to low frequency tones. We conclude that mLNTB contains a population of neurons with extended dendritic trees where most of the synaptic input is found, that can show enhanced phase-locking and sensitivity to ITD. pvLNTB cells, presumed to provide glycinergic input to the MSO, get large somatic globular bushy synaptic inputs and are typically monaural with short tone responses similar to their primary input from the cochlear nucleus.


Assuntos
Percepção Auditiva/fisiologia , Neurônios/fisiologia , Técnicas de Patch-Clamp/métodos , Complexo Olivar Superior/fisiologia , Corpo Trapezoide/fisiologia , Animais , Feminino , Gerbillinae , Masculino , Microscopia Eletrônica , Complexo Olivar Superior/anatomia & histologia , Corpo Trapezoide/anatomia & histologia , Corpo Trapezoide/patologia
11.
Elife ; 42015 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-25915620

RESUMO

The time it takes a sound to travel from source to ear differs between the ears and creates an interaural delay. It varies systematically with spatial direction and is generally modeled as a pure time delay, independent of frequency. In acoustical recordings, we found that interaural delay varies with frequency at a fine scale. In physiological recordings of midbrain neurons sensitive to interaural delay, we found that preferred delay also varies with sound frequency. Similar observations reported earlier were not incorporated in a functional framework. We find that the frequency dependence of acoustical and physiological interaural delays are matched in key respects. This suggests that binaural neurons are tuned to acoustical features of ecological environments, rather than to fixed interaural delays. Using recordings from the nerve and brainstem we show that this tuning may emerge from neurons detecting coincidences between input fibers that are mistuned in frequency.


Assuntos
Vias Auditivas/fisiologia , Nervo Coclear/fisiologia , Orelha/fisiologia , Colículos Inferiores/fisiologia , Som , Processamento Espacial/fisiologia , Estimulação Acústica/métodos , Animais , Gatos , Tempo de Reação/fisiologia , Fatores de Tempo
12.
Nat Neurosci ; 18(3): 444-52, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25664914

RESUMO

Sound localization critically depends on detection of differences in arrival time of sounds at the two ears (acoustic delay). The fundamental mechanisms are debated, but all proposals include a process of coincidence detection and a separate source of internal delay that offsets the acoustic delay and determines neural tuning. We used in vivo patch-clamp recordings of binaural neurons in the Mongolian gerbil and pharmacological manipulations to directly compare neuronal input to output and to separate excitation from inhibition. Our results cannot be accounted for by existing models and reveal that coincidence detection is not an instantaneous process, but is instead shaped by the interaction of intrinsic conductances with preceding synaptic activity. This interaction generates an internal delay as an intrinsic part of the process of coincidence detection. The multiplication and time-shifting stages thought to extract synchronous activity in many brain areas can therefore be combined in a single operation.


Assuntos
Vias Auditivas/citologia , Encéfalo/citologia , Neurônios/fisiologia , Detecção de Sinal Psicológico/fisiologia , Localização de Som , Estimulação Acústica , Animais , Relação Dose-Resposta a Droga , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Gerbillinae , Glicinérgicos/farmacologia , Técnicas In Vitro , Masculino , Técnicas de Patch-Clamp , Psicoacústica , Quinoxalinas/farmacologia , Tempo de Reação/fisiologia , Detecção de Sinal Psicológico/efeitos dos fármacos , Estricnina/farmacologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-24822037

RESUMO

Coincidence detection by binaural neurons in the medial superior olive underlies sensitivity to interaural time difference (ITD) and interaural correlation (ρ). It is unclear whether this process is akin to a counting of individual coinciding spikes, or rather to a correlation of membrane potential waveforms resulting from converging inputs from each side. We analyzed spike trains of axons of the cat trapezoid body (TB) and auditory nerve (AN) in a binaural coincidence scheme. ITD was studied by delaying "ipsi-" vs. "contralateral" inputs; ρ was studied by using responses to different noises. We varied the number of inputs; the monaural and binaural threshold and the coincidence window duration. We examined physiological plausibility of output "spike trains" by comparing their rate and tuning to ITD and ρ to those of binaural cells. We found that multiple inputs are required to obtain a plausible output spike rate. In contrast to previous suggestions, monaural threshold almost invariably needed to exceed binaural threshold. Elevation of the binaural threshold to values larger than 2 spikes caused a drastic decrease in rate for a short coincidence window. Longer coincidence windows allowed a lower number of inputs and higher binaural thresholds, but decreased the depth of modulation. Compared to AN fibers, TB fibers allowed higher output spike rates for a low number of inputs, but also generated more monaural coincidences. We conclude that, within the parameter space explored, the temporal patterns of monaural fibers require convergence of multiple inputs to achieve physiological binaural spike rates; that monaural coincidences have to be suppressed relative to binaural ones; and that the neuron has to be sensitive to single binaural coincidences of spikes, for a number of excitatory inputs per side of 10 or less. These findings suggest that the fundamental operation in the mammalian binaural circuit is coincidence counting of single binaural input spikes.


Assuntos
Potenciais de Ação/fisiologia , Vias Auditivas/fisiologia , Nervo Coclear/fisiologia , Neurônios/fisiologia , Núcleo Olivar/fisiologia , Estimulação Acústica , Animais , Gatos , Localização de Som/fisiologia
14.
J Assoc Res Otolaryngol ; 15(2): 203-18, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24402167

RESUMO

Temporal differences between the two ears are critical for spatial hearing. They can be described along axes of interaural time difference (ITD) and interaural correlation, and their processing starts in the brainstem with the convergence of monaural pathways which are tuned in frequency and which carry temporal information. In previous studies, we examined the bandwidth (BW) of frequency tuning at two stages: the auditory nerve (AN) and inferior colliculus (IC), and showed that BW depends on characteristic frequency (CF) but that there is no difference in the mean BW of these two structures when measured in a binaural, temporal framework. This suggested that there is little frequency convergence in the ITD pathway between AN and IC and that frequency selectivity determined by the cochlear filter is preserved up to the IC. Unexpectedly, we found that AN and IC neurons can be similar in CF and BW, yet responses to changes in interaural correlation in the IC were different than expected from coincidence patterns ("pseudo-binaural" responses) in the AN. To better understand this, we here examine the responses of bushy cells, which provide monaural inputs to binaural neurons. Using broadband noise, we measured BW and correlation sensitivity in the cat trapezoid body (TB), which contains the axons of bushy cells. This allowed us to compare these two metrics at three stages in the ITD pathway. We found that BWs in the TB are similar to those in the AN and IC. However, TB neurons were found to be more sensitive to changes in stimulus correlation than AN or IC neurons. This is consistent with findings that show that TB fibers are more temporally precise than AN fibers, but is surprising because it suggests that the temporal information available monaurally is not fully exploited binaurally.


Assuntos
Nervo Coclear/fisiologia , Colículos Inferiores/fisiologia , Estimulação Acústica , Animais , Gatos , Nervo Coclear/anatomia & histologia , Colículos Inferiores/anatomia & histologia , Ruído , Fatores de Tempo
15.
Hear Res ; 238(1-2): 49-57, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18187277

RESUMO

Sound pressure level changes can affect the timing of spiketrains. Timing of spiketrains is critical for sensitivity to interaural timing differences (ITDs). Interaural level differences (ILDs) can therefore affect the ITD cue. It has been hypothesized that ILDs may be coded indirectly through a peripheral conversion of level to time (but it should be cautioned that the changes in phase with SPL in low-CF AN fibers of the cat are more complicated) (Jeffress, L.A., 1948. A place theory of sound localization. J. Comp. Physiol. Psychol. 41, 35-39). We tested this conversion by recording from auditory nerve fibers to broadband noise at different SPLs. For each fiber, correlograms were constructed to compare timing to fine-structure across SPLs. We find generally a decrease in the time delay between spikes and the stimulus with increasing SPL. However, the magnitudes of the shift in time are surprisingly small, and dependent on characteristic frequency (CF): the largest shifts are approximately 10 micros/dB and occur at the lowest CFs. Nevertheless, the effects of level on spike timing are systematic and of a magnitude to which the binaural system is sensitive. Thus, even though the results indicate that ILD is not traded for ITD in a simple way, the possibility that low-frequency ILDs affect the binaural percept via a peripheral level-to-time conversion cannot be excluded.


Assuntos
Vias Auditivas/fisiologia , Nervo Coclear/fisiologia , Localização de Som , Estimulação Acústica , Animais , Gatos , Sinais (Psicologia) , Potenciais Evocados , Modelos Neurológicos , Pressão , Tempo de Reação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...