Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 553, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831310

RESUMO

Development of the human pancreas requires the precise temporal control of gene expression via epigenetic mechanisms and the binding of key transcription factors. We quantified genome-wide patterns of DNA methylation in human fetal pancreatic samples from donors aged 6 to 21 post-conception weeks. We found dramatic changes in DNA methylation across pancreas development, with > 21% of sites characterized as developmental differentially methylated positions (dDMPs) including many annotated to genes associated with monogenic diabetes. An analysis of DNA methylation in postnatal pancreas tissue showed that the dramatic temporal changes in DNA methylation occurring in the developing pancreas are largely limited to the prenatal period. Significant differences in DNA methylation were observed between males and females at a number of autosomal sites, with a small proportion of sites showing sex-specific DNA methylation trajectories across pancreas development. Pancreas dDMPs were not distributed equally across the genome and were depleted in regulatory domains characterized by open chromatin and the binding of known pancreatic development transcription factors. Finally, we compared our pancreas dDMPs to previous findings from the human brain, identifying evidence for tissue-specific developmental changes in DNA methylation. This study represents the first systematic exploration of DNA methylation patterns during human fetal pancreas development and confirms the prenatal period as a time of major epigenomic plasticity.


Assuntos
Metilação de DNA , Pâncreas , Humanos , Pâncreas/metabolismo , Pâncreas/embriologia , Feminino , Masculino , Regulação da Expressão Gênica no Desenvolvimento , Ilhas de CpG , Epigênese Genética , Genoma Humano , Feto/metabolismo
2.
Sci Adv ; 10(21): eadn7655, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38781333

RESUMO

Few neuropsychiatric disorders have replicable biomarkers, prompting high-resolution and large-scale molecular studies. However, we still lack consensus on a more foundational question: whether quantitative shifts in cell types-the functional unit of life-contribute to neuropsychiatric disorders. Leveraging advances in human brain single-cell methylomics, we deconvolve seven major cell types using bulk DNA methylation profiling across 1270 postmortem brains, including from individuals diagnosed with Alzheimer's disease, schizophrenia, and autism. We observe and replicate cell-type compositional shifts for Alzheimer's disease (endothelial cell loss), autism (increased microglia), and schizophrenia (decreased oligodendrocytes), and find age- and sex-related changes. Multiple layers of evidence indicate that endothelial cell loss contributes to Alzheimer's disease, with comparable effect size to APOE genotype among older people. Genome-wide association identified five genetic loci related to cell-type composition, involving plausible genes for the neurovascular unit (P2RX5 and TRPV3) and excitatory neurons (DPY30 and MEMO1). These results implicate specific cell-type shifts in the pathophysiology of neuropsychiatric disorders.


Assuntos
Doença de Alzheimer , Transtorno Autístico , Encéfalo , Metilação de DNA , Esquizofrenia , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Esquizofrenia/genética , Esquizofrenia/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Transtorno Autístico/genética , Transtorno Autístico/patologia , Masculino , Feminino , Estudo de Associação Genômica Ampla , Idoso , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Epigenômica/métodos , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais
3.
BMC Biol ; 22(1): 17, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273288

RESUMO

BACKGROUND: Due to interindividual variation in the cellular composition of the human cortex, it is essential that covariates that capture these differences are included in epigenome-wide association studies using bulk tissue. As experimentally derived cell counts are often unavailable, computational solutions have been adopted to estimate the proportion of different cell types using DNA methylation data. Here, we validate and profile the use of an expanded reference DNA methylation dataset incorporating two neuronal and three glial cell subtypes for quantifying the cellular composition of the human cortex. RESULTS: We tested eight reference panels containing different combinations of neuronal- and glial cell types and characterised their performance in deconvoluting cell proportions from computationally reconstructed or empirically derived human cortex DNA methylation data. Our analyses demonstrate that while these novel brain deconvolution models produce accurate estimates of cellular proportions from profiles generated on postnatal human cortex samples, they are not appropriate for the use in prenatal cortex or cerebellum tissue samples. Applying our models to an extensive collection of empirical datasets, we show that glial cells are twice as abundant as neuronal cells in the human cortex and identify significant associations between increased Alzheimer's disease neuropathology and the proportion of specific cell types including a decrease in NeuNNeg/SOX10Neg nuclei and an increase of NeuNNeg/SOX10Pos nuclei. CONCLUSIONS: Our novel deconvolution models produce accurate estimates for cell proportions in the human cortex. These models are available as a resource to the community enabling the control of cellular heterogeneity in epigenetic studies of brain disorders performed on bulk cortex tissue.


Assuntos
Metilação de DNA , Epigênese Genética , Feminino , Gravidez , Recém-Nascido , Humanos , Neuroglia , Córtex Cerebral , Neurônios/metabolismo
4.
Mol Brain ; 14(1): 98, 2021 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-34174924

RESUMO

Induced pluripotent stem cells (iPSCs) and their differentiated neurons (iPSC-neurons) are a widely used cellular model in the research of the central nervous system. However, it is unknown how well they capture age-associated processes, particularly given that pluripotent cells are only present during the earliest stages of mammalian development. Epigenetic clocks utilize coordinated age-associated changes in DNA methylation to make predictions that correlate strongly with chronological age. It has been shown that the induction of pluripotency rejuvenates predicted epigenetic age. As existing clocks are not optimized for the study of brain development, we developed the fetal brain clock (FBC), a bespoke epigenetic clock trained in human prenatal brain samples in order to investigate more precisely the epigenetic age of iPSCs and iPSC-neurons. The FBC was tested in two independent validation cohorts across a total of 194 samples, confirming that the FBC outperforms other established epigenetic clocks in fetal brain cohorts. We applied the FBC to DNA methylation data from iPSCs and embryonic stem cells and their derived neuronal precursor cells and neurons, finding that these cell types are epigenetically characterized as having an early fetal age. Furthermore, while differentiation from iPSCs to neurons significantly increases epigenetic age, iPSC-neurons are still predicted as being fetal. Together our findings reiterate the need to better understand the limitations of existing epigenetic clocks for answering biological research questions and highlight a limitation of iPSC-neurons as a cellular model of age-related diseases.


Assuntos
Relógios Biológicos/genética , Encéfalo/embriologia , Senescência Celular , Epigênese Genética , Feto/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Modelos Biológicos , Neurônios/citologia , Senescência Celular/genética , Metilação de DNA/genética , Bases de Dados Genéticas , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Gravidez , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...