Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Alcohol Clin Exp Res ; 39(10): 2022-31, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26334550

RESUMO

BACKGROUND: The P2X4 receptor (P2X4R) is thought to be involved in regulating alcohol-consuming behaviors, and ethanol (EtOH) has been reported to inhibit P2X4Rs. Ivermectin is an antiparasitic agent that acts as a positive allosteric modulator of the P2X4R. This study examined the effects of systemically and centrally administered ivermectin on alcohol drinking of replicate lines of high-alcohol-drinking (HAD-1/HAD-2) rats, and the effects of lentiviral-delivered short-hairpin RNAs (shRNAs) targeting P2rx4 on EtOH intake of female HAD-2 rats. METHODS: For the first experiment, adult male HAD-1 and HAD-2 rats were given 24-hour free-choice access to 15% EtOH versus water. Dose-response effects of ivermectin (1.5 to 7.5 mg/kg, intraperitoneally [i.p.]) on EtOH intake were determined; the effects of ivermectin were then examined for 2% w/v sucrose intake over 5 consecutive days. In the second experiment, female HAD-2 rats were trained to consume 15% EtOH under 2-hour limited access conditions, and dose-response effects of intracerebroventricular (ICV) administration of ivermectin (0.5 to 2.0 µg) were determined over 5 consecutive days. The third experiment determined the effects of microinfusion of a lentivirus expressing P2rx4 shRNAs into the posterior ventral tegmental area (VTA) on 24-hour EtOH free-choice drinking of female HAD-2 rats. RESULTS: The highest i.p. dose of ivermectin reduced alcohol drinking (30 to 45%) in both rat lines, but did not alter sucrose intake. HAD-2 rats appeared to be more sensitive than HAD-1 rats to the effects of ivermectin. ICV administration of ivermectin reduced 2-hour limited access intake (~35%) of female HAD-2 rats; knockdown of P2rx4 expression in the posterior VTA reduced 24-hour free-choice EtOH intake (~20%). CONCLUSIONS: Overall, the results of this study support a role for P2X4Rs within the mesolimbic system in mediating alcohol-drinking behavior.


Assuntos
Consumo de Bebidas Alcoólicas/fisiopatologia , Receptores Purinérgicos P2X4/fisiologia , Animais , Relação Dose-Resposta a Droga , Feminino , Infusões Intraventriculares , Ivermectina/administração & dosagem , Ivermectina/farmacologia , Masculino , Agonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Endogâmicos , Receptores Purinérgicos P2X4/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos
2.
Psychopharmacology (Berl) ; 232(13): 2251-62, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25585681

RESUMO

RATIONALE: Phosphodiesterase-4 (PDE4) and neuroimmune signaling have been posited to regulate alcohol drinking. OBJECTIVES: This study evaluated the involvement of PDE4 and Il22ra2 on ethanol (EtOH) intake by alcohol-preferring (P) and high-alcohol-drinking (HAD1) rats. METHODS: Exp 1 determined the dose-response effects of PDE4 inhibitors, rolipram, and Ro 20-1724, on 2 h/day free-choice EtOH intake by adult P and HAD1 rats. Exps 2-3 examined the effects of repeated administration with the PDE4 inhibitors on EtOH or sucrose intake and locomotor behavior. Exp 4 determined Pde4-associated gene expression differences in subregions of the extended amygdala, between high- and low-alcohol-consuming rat lines. Exp 5 evaluated the effects of infusing short hairpin RNA to knock down Il22ra2 in the nucleus accumbens (NAc) shell on a 24-h free-choice EtOH drinking by P rats. RESULTS: Administration of rolipram or Ro 20-1724 reduced EtOH intake by P rats; Ro 20-1724 reduced EtOH intake by HAD1 rats. Repeated rolipram or Ro 20-1724 exposure reduced EtOH intake by P and HAD1 rats. PDE4 inhibition induced motor impairment during the first hour of EtOH intake by P rats. Higher gene expression levels for PDE4A were found in the NAc shell of P vs NP rats. ShRNAs targeting Il22ra2 in the NAc shell significantly reduced chronic EtOH intake. CONCLUSIONS: PDE4 and neuroinflammatory/immune signaling pathways could represent molecular targets for the treatment of alcohol use disorders in genetically predisposed subjects. This study underscores the importance of testing compounds over multiple days and rat lines when determining efficacy to disrupt excessive alcohol intake.


Assuntos
Consumo de Bebidas Alcoólicas/tratamento farmacológico , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Sistemas de Liberação de Medicamentos/métodos , Etanol/administração & dosagem , Inibidores da Fosfodiesterase 4/administração & dosagem , Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/metabolismo , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Relação Dose-Resposta a Droga , Feminino , Masculino , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Ratos , Rolipram/administração & dosagem , Especificidade da Espécie
3.
Addict Biol ; 20(1): 38-42, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24215262

RESUMO

Neuroinflammatory signaling pathways in the central nervous system are of current interest as potential pharmacotherapy targets for alcohol dependence. In this study, we examined the ability of ibudilast, a non-selective phosphodiesterase inhibitor, to reduce alcohol drinking and relapse in alcohol-preferring P rats, high-alcohol drinking HAD1 rats, and in mice made dependent on alcohol through cycles of alcohol vapor exposure. When administered twice daily, ibudilast reduced alcohol drinking in rats by approximately 50% and reduced drinking by alcohol-dependent mice at doses which had no effect in non-dependent mice. These findings support the viability of ibudilast as a possible treatment for alcohol dependence.


Assuntos
Consumo de Bebidas Alcoólicas , Alcoolismo , Comportamento Animal/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Piridinas/farmacologia , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Ratos
4.
Front Neurosci ; 8: 176, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25009459

RESUMO

Alcohol use disorders (AUDs) have a staggering socioeconomic impact. Few therapeutic options are available, and they are largely inadequate. These shortcomings highlight the urgent need to develop effective medications to prevent and/or treat AUDs. A critical barrier is the lack of information regarding the molecular target(s) by which ethanol (EtOH) exerts its pharmacological activity. This review highlights findings implicating P2X4 receptors (P2X4Rs) as a target for the development of therapeutics to treat AUDs and discusses the use of ivermectin (IVM) as a potential clinical tool for treatment of AUDs. P2XRs are a family of ligand-gated ion channels (LGICs) activated by extracellular ATP. Of the P2XR subtypes, P2X4Rs are expressed the most abundantly in the CNS. Converging evidence suggests that P2X4Rs are involved in the development and progression of AUDs. First, in vitro studies report that pharmacologically relevant EtOH concentrations can negatively modulate ATP-activated currents. Second, P2X4Rs in the mesocorticolimbic dopamine system are thought to play a role in synaptic plasticity and are located ideally to modulate brain reward systems. Third, alcohol-preferring (P) rats have lower functional expression of the p2rx4 gene than alcohol-non-preferring (NP) rats suggesting an inverse relationship between alcohol intake and P2X4R expression. Similarly, whole brain p2rx4 expression has been shown to relate inversely to innate 24 h alcohol preference across 28 strains of rats. Fourth, mice lacking the p2rx4 gene drink more EtOH than wildtype controls. Fifth, IVM, a positive modulator of P2X4Rs, antagonizes EtOH-mediated inhibition of P2X4Rs in vitro and reduces EtOH intake and preference in vivo. These findings suggest that P2X4Rs contribute to EtOH intake. The present review summarizes recent findings focusing on the P2X4R as a molecular target of EtOH action, its role in EtOH drinking behavior and modulation of its activity by IVM as a potential therapy for AUDs.

5.
J Addict Res Ther ; Suppl 42013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25419478

RESUMO

Alcohol use disorders are pervasive in society and their impact affects quality of life, morbidity and mortality, as well as individual productivity. Alcohol has detrimental effects on an individual's physiology and nervous system, and is associated with disorders of many organ and endocrine systems impacting an individual's health, behavior, and ability to interact with others. Youth are particularly affected. Unfortunately, adolescent usage also increases the probability for a progression to dependence. Several areas of research indicate that the deleterious effects of alcohol abuse may be exacerbated by mixing caffeine with alcohol. Some behavioral evidence suggests that caffeine increases alcohol drinking and binge drinking episodes, which in turn can foster the development of alcohol dependence. As a relatively new public health concern, the epidemiological focus has been to establish a need for investigating the effects of caffeinated alcohol. While the trend of co-consuming these substances is growing, knowledge of the central mechanisms associated with caffeinated ethanol has been lacking. Research suggests that caffeine and ethanol can have additive or synergistic pharmacological actions and neuroadaptations, with the adenosine and dopamine systems in particular implicated. However, the limited literature on the central effects of caffeinated ethanol provides an impetus to increase our knowledge of the neuroadaptive effects of this combination and their impact on cognition and behavior. Research from our laboratories indicates that an established rodent animal model of alcoholism can be extended to investigate the acute and chronic effects of caffeinated ethanol.

6.
Recent Pat CNS Drug Discov ; 7(2): 93-112, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22574678

RESUMO

This paper introduces the Special Section: Pharmacotherapies for the Treatment of Alcohol Abuse and Dependence and provides a summary of patents targeting neurotransmitter systems not covered in the other four chapters. The World Health Organization notes that alcoholic-type drinking results in 2.5 million deaths per year, and these deaths occur to a disproportionately greater extent among adolescents and young adults. Developing a pharmacological treatment targeting alcohol abuse and dependence is complicated by (a) the heterogeneous nature of the disease(s), (b) alcohol affecting multiple neurotransmitter and neuromodulator systems, and (c) alcohol affecting multiple organ systems which in turn influence the function of the central nervous system. Presently, the USA Federal Drug Administration has approved three pharmacotherapies for alcoholism: disulfiram, naltrexone, and acamprosate. This chapter provides a summary of the following systems, which are not covered in the accompanying chapters; alcohol and acetaldehyde metabolism, opioid, glycinergic, GABA-A, neurosteroid, dopaminergic, serotonergic, and endocannabinoid, as well as patents targeting these systems for the treatment of alcoholism. Finally, an overview is presented on the use of pharmacogenetics and pharmacogenomics in tailoring treatments for certain subpopulations of alcoholics, which is expected to continue in the future.


Assuntos
Dissuasores de Álcool/farmacologia , Dissuasores de Álcool/uso terapêutico , Alcoolismo/tratamento farmacológico , Patentes como Assunto , Transmissão Sináptica/efeitos dos fármacos , Humanos
7.
Pharmacol Biochem Behav ; 100(1): 90-7, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21824488

RESUMO

Alcohol binge-drinking, especially among adolescents and young adults, is a serious public health concern. The present study examined ethanol binge-like drinking by peri-adolescent [postnatal days (PNDs 30-72)] and adult (PNDs 90-132) alcohol-preferring (P) rats with a drinking-in-the-dark-multiple-scheduled-access (DID-MSA) procedure used by our laboratory. Male and female P rats were provided concurrent access to 15% and 30% ethanol for three 1-h sessions across the dark cycle 5 days/week. For the 1st week, adolescent and adult female P rats consumed 3.4 and 1.6g/kg of ethanol, respectively, during the 1st hour of access, whereas for male rats the values were 3.5 and 1.1g/kg of ethanol, respectively. Adult intakes increased to ~2.0 g/kg/h and adolescent intakes decreased to ~2.5 g/kg/h across the 6 weeks of ethanol access. The daily ethanol intake of adult DID-MSA rats approximated or modestly exceeded that seen in continuous access (CA) rats or the selection criterion for P rats (≥5 g/kg/day). However, in general, the daily ethanol intake of DID-MSA peri-adolescent rats significantly exceeded that of their CA counterparts. BELs were assessed at 15-min intervals across the 3rd hour of access during the 4th week. Ethanol intake was 1.7 g/kg vs. 2.7 g/kg and BELs were 57 mg% vs. 100mg% at 15- and 60-min, respectively. Intoxication induced by DID-MSA in female P rats was assessed during the 1st vs. 4th week of ethanol access. Level of impairment did not differ between the 2 weeks (106 vs. 97 s latency to fall, 120 s criterion) and was significant (vs. naïve controls) only during the 4th week. Overall, these findings support the use of the DID-MSA procedure in rats, and underscore the presence of age- and sex-dependent effects mediating ethanol binge-like drinking in P rats.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Etanol/intoxicação , Modelos Animais , Fatores Etários , Consumo de Bebidas Alcoólicas/psicologia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Ratos , Autoadministração
8.
Alcohol Clin Exp Res ; 33(10): 1721-30, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19572982

RESUMO

BACKGROUND: The nucleus accumbens (NAc) has been implicated in the neurochemical effects of ethanol (EtOH). Evidence suggests that repeated EtOH exposures and chronic EtOH drinking increase dopamine (DA) neurotransmission in the NAc due, in part, to a reduction in D(2) autoreceptor function. The objectives of the current study were to evaluate the effects of a single EtOH pretreatment and repeated EtOH pretreatments on DA neurotransmission and D(2) autoreceptor function in the NAc of Wistar rats. METHODS: Experiment 1 examined D(2) receptor function after a single intraperitoneal (i.p.) injection or repeated i.p. injections of 0.0, 0.5, 1.0, or 2.0 g/kg EtOH to female Wistar rats. Single EtOH pretreatment groups received 1 daily i.p. injection of 0.9% NaCl (saline) for 4 days, followed by 1 day of saline or EtOH administration; repeated EtOH pretreatment groups received 5 days of saline or EtOH injections. Reverse microdialysis experiments were conducted to determine the effects of local perfusion with the D(2)-like receptor antagonist (-)sulpiride (SUL; 100 uM), on extracellular DA levels in the NAc. Experiment 2 evaluated if pretreatment with a single, moderate (1.0 g/kg) dose of EtOH would alter levels and clearance of extracellular DA in the NAc, as measured by no-net-flux (NNF) microdialysis. Subjects were divided into the EtOH-naïve and the single EtOH pretreated groups from Experiment 1. RESULTS: Experiment 1: Changes in extracellular DA levels induced with SUL perfusion were altered by the EtOH dose (p < 0.001), but not the number of EtOH pretreatments (p > 0.05). Post-hoc analyses indicated that groups pretreated with single or repeated 1.0 g/kg EtOH showed significantly attenuated DA response to SUL, compared with all other groups (p < 0.001). Experiment 2: Multiple linear regression analyses yielded significantly (p < 0.05) higher extracellular DA concentrations in the NAc of rats receiving EtOH pretreatment, compared with their EtOH-naïve counterparts (3.96 +/- 0.42 nM and 3.25 +/- 0.23 nM, respectively). Extraction fractions were not significantly different between the 2 groups. CONCLUSIONS: The present results indicate that a single EtOH pretreatment at a moderate dose can increase DA neurotransmission in the NAc due, in part, to reduced D(2) autoreceptor function.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Dopamina/metabolismo , Etanol/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Receptores de Dopamina D2/efeitos dos fármacos , Análise de Variância , Animais , Relação Dose-Resposta a Droga , Feminino , Modelos Lineares , Microdiálise , Ratos , Ratos Wistar , Técnicas Estereotáxicas , Transmissão Sináptica/efeitos dos fármacos
9.
Alcohol Clin Exp Res ; 32(3): 435-42, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18215218

RESUMO

BACKGROUND: The objective of this study was to determine time-course changes in in vivo ethanol (EtOH) concentrations using a novel subcutaneous (s.c.) microdialysis sampling technique. The hypothesis to be tested was that EtOH concentrations in the s.c. fluid would reflect blood EtOH concentrations. If this is the case, then s.c. microdialysis could allow a more detailed analysis of changes in in vivo levels of EtOH under different drinking paradigms. METHODS: Adult male and female Wistar rats and male alcohol-preferring (P) rats were used in this study. A loop-style microdialysis probe was designed for s.c. applications. After initial in vitro characterization, probes were implanted under the skin between the shoulder blades. Animals were allowed to recover 4 to 24 hours prior to microdialysis collection (2.0 microl/min flow rate with isotonic saline). In vivo microdialysis experiments were then conducted to determine (i) the extraction fraction (or clearance) using EtOH no-net-flux (NNF) coupled with the alcohol clamp method, (ii) the dose-response and time-course effects after systemic EtOH administration and to compare with blood EtOH levels, and (iii) the time-course changes in EtOH levels during and after an EtOH drinking episode. RESULTS: In vivo probe recovery (extraction fraction) obtained using the alcohol clamp method was 69 +/- 3%, and was comparable to the in vitro recovery of 73 +/- 2%. For the EtOH dose-response experiment, rats injected i.p. with 0.5, 1.0, or 2.0 g/kg EtOH showed a clear dose-response effect in the s.c. dialysate samples. Peak concentrations (70, 123, and 203 mg%, respectively) were reached by 15 minutes after injection. In an experiment comparing levels of EtOH in s.c. dialysis and arterial blood samples in rats administered 1.0 g/kg EtOH, similar time-course changes in in vivo EtOH concentrations were observed with both i.g. and i.p. EtOH administration. In P rats drinking 15% EtOH during a 1-hour scheduled access period, EtOH levels in s.c. microdialysates rose rapidly over the session and peaked at approximately 50 mg% at 60 to 80 minutes. CONCLUSIONS: Overall, these experiments indicate that s.c. EtOH and blood EtOH concentrations follow a similar time course. Moreover, s.c. microdialysis can be useful as an experimental approach for determining detailed time-course changes in in vivo EtOH concentrations associated with alcohol drinking episodes.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Etanol/metabolismo , Microdiálise/métodos , Tela Subcutânea/metabolismo , Consumo de Bebidas Alcoólicas/sangue , Animais , Etanol/administração & dosagem , Etanol/sangue , Feminino , Masculino , Ratos , Ratos Wistar , Tela Subcutânea/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...