Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2710: 209-221, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37688735

RESUMO

Neural circuits consist of a myriad of distinct cell types, each with specific intrinsic properties and patterns of synaptic connectivity, which transform neural input and convey this information to downstream targets. Understanding how different features of an odor stimulus are encoded and relayed to their appropriate targets will require selective identification and manipulation of these different elements of the circuit. Here, we describe methods to obtain dense, extracellular electrophysiological recordings of odor-evoked activity in olfactory (piriform) cortex of awake, head-fixed mice, and optogenetic tools and procedures to identify genetically defined cell types within this circuit.


Assuntos
Córtex Olfatório , Córtex Piriforme , Animais , Camundongos , Vigília , Optogenética , Olfato
2.
Curr Biol ; 33(7): R266-R269, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37040708

RESUMO

Many cortical brain regions are spatially organized to optimize sensory representation. Such topographic maps have so far been elusive in the olfactory cortex. A high-throughput tracing study reveals that the neural circuits connecting olfactory regions are indeed topographically organized.


Assuntos
Mapeamento Encefálico , Córtex Olfatório , Animais , Camundongos , Córtex Olfatório/citologia , Córtex Olfatório/fisiologia , Neurociências/métodos , Neurônios/citologia
3.
Elife ; 102021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34913870

RESUMO

Understanding how distinct neuron types in a neural circuit process and propagate information is essential for understanding what the circuit does and how it does it. The olfactory (piriform, PCx) cortex contains two main types of principal neurons, semilunar (SL) and superficial pyramidal (PYR) cells. SLs and PYRs have distinct morphologies, local connectivity, biophysical properties, and downstream projection targets. Odor processing in PCx is thought to occur in two sequential stages. First, SLs receive and integrate olfactory bulb input and then PYRs receive, transform, and transmit SL input. To test this model, we recorded from populations of optogenetically identified SLs and PYRs in awake, head-fixed mice. Notably, silencing SLs did not alter PYR odor responses, and SLs and PYRs exhibited differences in odor tuning properties and response discriminability that were consistent with their distinct embeddings within a sensory-associative cortex. Our results therefore suggest that SLs and PYRs form parallel channels for differentially processing odor information in and through PCx.


Assuntos
Camundongos Transgênicos/fisiologia , Neurônios/fisiologia , Córtex Olfatório/fisiologia , Condutos Olfatórios/fisiologia , Células Piramidais/fisiologia , Receptores Odorantes/fisiologia , Olfato/fisiologia , Animais , Masculino , Camundongos
4.
Cell Rep ; 35(3): 109001, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33882304

RESUMO

It is well established that seizures beget seizures, yet the cellular processes that underlie progressive epileptogenesis remain unclear. Here, we use optogenetics to briefly activate targeted populations of mouse piriform cortex (PCx) principal neurons in vivo. After just 3 or 4 days of stimulation, previously subconvulsive stimuli trigger massive, generalized seizures. Highly recurrent allocortices are especially prone to "optokindling." Optokindling upsets the balance of recurrent excitation and feedback inhibition. To understand how this balance is disrupted, we then selectively reactivate the same neurons in vitro. Surprisingly, we find no evidence of heterosynaptic potentiation; instead, we observe a marked, pathway-specific decrease in feedback inhibition. We find no loss of inhibitory interneurons; rather, decreased GABA synthesis in feedback inhibitory neurons appears to underlie weakened inhibition. Optokindling will allow precise identification of the molecular processes by which brain activity patterns can progressively and pathologically disrupt the balance of cortical excitation and inhibition.


Assuntos
Estimulação Elétrica/métodos , Retroalimentação Sensorial , Córtex Piriforme/fisiopatologia , Convulsões/fisiopatologia , Sinapses/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Eletrodos Implantados , Potenciais Evocados/fisiologia , Retroalimentação Fisiológica , Feminino , Masculino , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Optogenética/métodos , Córtex Piriforme/metabolismo , Convulsões/metabolismo , Técnicas Estereotáxicas , Sinapses/patologia , Transmissão Sináptica
5.
Curr Biol ; 30(22): 4548, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33202222
6.
J Neurosci ; 40(49): 9414-9425, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33115926

RESUMO

Odors activate distributed ensembles of neurons within the piriform cortex, forming cortical representations of odor thought to be essential to olfactory learning and behaviors. This odor response is driven by direct input from the olfactory bulb, but is also shaped by a dense network of associative or intracortical inputs to piriform, which may enhance or constrain the cortical odor representation. With optogenetic techniques, it is possible to functionally isolate defined inputs to piriform cortex and assess their potential to activate or inhibit piriform pyramidal neurons. The anterior olfactory nucleus (AON) receives direct input from the olfactory bulb and sends an associative projection to piriform cortex that has potential roles in the state-dependent processing of olfactory behaviors. Here, we provide a detailed functional assessment of the AON afferents to piriform in male and female C57Bl/6J mice. We confirm that the AON forms glutamatergic excitatory synapses onto piriform pyramidal neurons; and while these inputs are not as strong as piriform recurrent collaterals, they are less constrained by disynaptic inhibition. Moreover, AON-to-piriform synapses contain a substantial NMDAR-mediated current that prolongs the synaptic response at depolarized potentials. These properties of limited inhibition and slow NMDAR-mediated currents result in strong temporal summation of AON inputs within piriform pyramidal neurons, and suggest that the AON could powerfully enhance activation of piriform neurons in response to odor.SIGNIFICANCE STATEMENT Odor information is transmitted from olfactory receptors to olfactory bulb, and then to piriform cortex, where ensembles of activated neurons form neural representations of the odor. While these ensembles are driven by primary bulbar afferents, and shaped by intracortical recurrent connections, the potential for another early olfactory area, the anterior olfactory nucleus (AON), to contribute to piriform activity is not known. Here, we use optogenetic circuit-mapping methods to demonstrate that AON inputs can significantly activate piriform neurons, as they are coupled to NMDAR currents and to relatively modest disynaptic inhibition. The AON may enhance the piriform odor response, encouraging further study to determine the states or behaviors through which AON potentiates the cortical response to odor.


Assuntos
Córtex Olfatório/fisiologia , Córtex Piriforme/fisiologia , Olfato/fisiologia , Sinapses/fisiologia , Animais , Feminino , Ácido Glutâmico/fisiologia , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Aferentes/fisiologia , Odorantes , Bulbo Olfatório/fisiologia , Optogenética , Células Piramidais , Receptores de N-Metil-D-Aspartato/fisiologia
7.
Curr Biol ; 30(20): R1279-R1281, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33080204

RESUMO

Neuroscientists still are not sure what makes any two odors smell alike. A new study uses light to manipulate the sensory cells in our nose that respond to odors and reveals that both the timing and identity of activated cells influence odor perception.


Assuntos
Percepção Olfatória , Lógica , Odorantes , Optogenética , Olfato
8.
Nature ; 584(7822): E38, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32782391

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
Nature ; 583(7815): 253-258, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32612230

RESUMO

The cortex organizes sensory information to enable discrimination and generalization1-4. As systematic representations of chemical odour space have not yet been described in the olfactory cortex, it remains unclear how odour relationships are encoded to place chemically distinct but similar odours, such as lemon and orange, into perceptual categories, such as citrus5-7. Here, by combining chemoinformatics and multiphoton imaging in the mouse, we show that both the piriform cortex and its sensory inputs from the olfactory bulb represent chemical odour relationships through correlated patterns of activity. However, cortical odour codes differ from those in the bulb: cortex more strongly clusters together representations for related odours, selectively rewrites pairwise odour relationships, and better matches odour perception. The bulb-to-cortex transformation depends on the associative network originating within the piriform cortex, and can be reshaped by passive odour experience. Thus, cortex actively builds a structured representation of chemical odour space that highlights odour relationships; this representation is similar across individuals but remains plastic, suggesting a means through which the olfactory system can assign related odour cues to common and yet personalized percepts.


Assuntos
Odorantes/análise , Córtex Olfatório/anatomia & histologia , Córtex Olfatório/fisiologia , Condutos Olfatórios , Compostos Orgânicos/análise , Compostos Orgânicos/química , Animais , Masculino , Camundongos , Bulbo Olfatório/citologia , Bulbo Olfatório/fisiologia , Córtex Olfatório/citologia , Percepção Olfatória/fisiologia , Olfato
10.
Elife ; 92020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32662420

RESUMO

Pattern completion, or the ability to retrieve stable neural activity patterns from noisy or partial cues, is a fundamental feature of memory. Theoretical studies indicate that recurrently connected auto-associative or discrete attractor networks can perform this process. Although pattern completion and attractor dynamics have been observed in various recurrent neural circuits, the role recurrent circuitry plays in implementing these processes remains unclear. In recordings from head-fixed mice, we found that odor responses in olfactory bulb degrade under ketamine/xylazine anesthesia while responses immediately downstream, in piriform cortex, remain robust. Recurrent connections are required to stabilize cortical odor representations across states. Moreover, piriform odor representations exhibit attractor dynamics, both within and across trials, and these are also abolished when recurrent circuitry is eliminated. Here, we present converging evidence that recurrently-connected piriform populations stabilize sensory representations in response to degraded inputs, consistent with an auto-associative function for piriform cortex supported by recurrent circuitry.


Assuntos
Anestesia , Odorantes , Bulbo Olfatório/fisiologia , Condutos Olfatórios/fisiologia , Córtex Piriforme/fisiologia , Animais , Ketamina/farmacologia , Camundongos , Bulbo Olfatório/efeitos dos fármacos , Condutos Olfatórios/efeitos dos fármacos , Córtex Piriforme/efeitos dos fármacos , Sinapses/fisiologia , Xilazina/farmacologia
11.
Curr Opin Neurobiol ; 64: 96-102, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32422571

RESUMO

Olfaction facilitates a large variety of animal behaviors such as feeding, mating, and communication. Recent work has begun to reveal the logic of odor transformations that occur throughout the olfactory system to form the odor percept. In this review, we describe the coding principles and mechanisms by which the piriform cortex and other olfactory areas encode three key odor features: odor identity, intensity, and valence. We argue that the piriform cortex produces a multiplexed odor code that allows non-interfering representations of distinct features of the odor stimulus to facilitate odor recognition and learning, which ultimately drives behavior.


Assuntos
Córtex Piriforme , Animais , Aprendizagem , Odorantes , Condutos Olfatórios , Percepção Olfatória , Olfato
12.
Proc Natl Acad Sci U S A ; 117(12): 6708-6716, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32161123

RESUMO

Antibodies against neuronal receptors and synaptic proteins are associated with a group of ill-defined central nervous system (CNS) autoimmune diseases termed autoimmune encephalitides (AE), which are characterized by abrupt onset of seizures and/or movement and psychiatric symptoms. Basal ganglia encephalitis (BGE), representing a subset of AE syndromes, is triggered in children by repeated group A Streptococcus (GAS) infections that lead to neuropsychiatric symptoms. We have previously shown that multiple GAS infections of mice induce migration of Th17 lymphocytes from the nose into the brain, causing blood-brain barrier (BBB) breakdown, extravasation of autoantibodies into the CNS, and loss of excitatory synapses within the olfactory bulb (OB). Whether these pathologies induce functional olfactory deficits, and the mechanistic role of Th17 lymphocytes, is unknown. Here, we demonstrate that, whereas loss of excitatory synapses in the OB is transient after multiple GAS infections, functional deficits in odor processing persist. Moreover, mice lacking Th17 lymphocytes have reduced BBB leakage, microglial activation, and antibody infiltration into the CNS, and have their olfactory function partially restored. Th17 lymphocytes are therefore critical for selective CNS entry of autoantibodies, microglial activation, and neural circuit impairment during postinfectious BGE.


Assuntos
Encéfalo/patologia , Modelos Animais de Doenças , Encefalite/etiologia , Encefalomielite Autoimune Experimental/etiologia , Doença de Hashimoto/etiologia , Transtornos do Olfato/etiologia , Infecções Estreptocócicas/complicações , Células Th17/imunologia , Animais , Autoanticorpos/imunologia , Gânglios da Base/imunologia , Gânglios da Base/patologia , Barreira Hematoencefálica , Encéfalo/imunologia , Encefalite/metabolismo , Encefalite/patologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Doença de Hashimoto/metabolismo , Doença de Hashimoto/patologia , Camundongos , Microglia/imunologia , Microglia/patologia , Neurônios/imunologia , Neurônios/patologia , Transtornos do Olfato/metabolismo , Transtornos do Olfato/patologia , Percepção Olfatória , Streptococcus pyogenes/fisiologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Células Th17/patologia
13.
Science ; 361(6407)2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30213885

RESUMO

Animals rely on olfaction to find food, attract mates, and avoid predators. To support these behaviors, they must be able to identify odors across different odorant concentrations. The neural circuit operations that implement this concentration invariance remain unclear. We found that despite concentration-dependence in the olfactory bulb (OB), representations of odor identity were preserved downstream, in the piriform cortex (PCx). The OB cells responding earliest after inhalation drove robust responses in sparse subsets of PCx neurons. Recurrent collateral connections broadcast their activation across the PCx, recruiting global feedback inhibition that rapidly truncated and suppressed cortical activity for the remainder of the sniff, discounting the impact of slower, concentration-dependent OB inputs. Eliminating recurrent collateral output amplified PCx odor responses rendered the cortex steeply concentration-dependent and abolished concentration-invariant identity decoding.


Assuntos
Condutos Olfatórios/fisiologia , Percepção Olfatória , Córtex Piriforme/fisiologia , Olfato/fisiologia , Animais , Retroalimentação Fisiológica , Camundongos , Odorantes/análise , Bulbo Olfatório/fisiologia
14.
Elife ; 72018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29595470

RESUMO

Different coding strategies are used to represent odor information at various stages of the mammalian olfactory system. A temporal latency code represents odor identity in olfactory bulb (OB), but this temporal information is discarded in piriform cortex (PCx) where odor identity is instead encoded through ensemble membership. We developed a spiking PCx network model to understand how this transformation is implemented. In the model, the impact of OB inputs activated earliest after inhalation is amplified within PCx by diffuse recurrent collateral excitation, which then recruits strong, sustained feedback inhibition that suppresses the impact of later-responding glomeruli. We model increasing odor concentrations by decreasing glomerulus onset latencies while preserving their activation sequences. This produces a multiplexed cortical odor code in which activated ensembles are robust to concentration changes while concentration information is encoded through population synchrony. Our model demonstrates how PCx circuitry can implement multiplexed ensemble-identity/temporal-concentration odor coding.


Assuntos
Modelos Neurológicos , Odorantes , Percepção Olfatória , Córtex Piriforme/fisiologia , Potenciais de Ação , Animais , Eletroencefalografia , Feminino , Masculino , Camundongos , Tempo
15.
Curr Biol ; 28(1): R23-R25, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29316416

RESUMO

A new study reports unsupervised, experience-dependent reorganization, but not stabilization, of neural odor representations in the zebrafish olfactory system.


Assuntos
Odorantes , Peixe-Zebra , Animais , Aprendizagem , Plasticidade Neuronal , Córtex Olfatório
16.
Elife ; 62017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28489003

RESUMO

Olfactory perception and behaviors critically depend on the ability to identify an odor across a wide range of concentrations. Here, we use calcium imaging to determine how odor identity is encoded in olfactory cortex. We find that, despite considerable trial-to-trial variability, odor identity can accurately be decoded from ensembles of co-active neurons that are distributed across piriform cortex without any apparent spatial organization. However, piriform response patterns change substantially over a 100-fold change in odor concentration, apparently degrading the population representation of odor identity. We show that this problem can be resolved by decoding odor identity from a subpopulation of concentration-invariant piriform neurons. These concentration-invariant neurons are overrepresented in piriform cortex but not in olfactory bulb mitral and tufted cells. We therefore propose that distinct perceptual features of odors are encoded in independent subnetworks of neurons in the olfactory cortex.


Assuntos
Neurônios/fisiologia , Odorantes , Percepção Olfatória , Córtex Piriforme/fisiologia , Animais , Sinalização do Cálcio , Camundongos , Modelos Neurológicos , Imagem Óptica
17.
Elife ; 62017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28379135

RESUMO

The ability to represent both stimulus identity and intensity is fundamental for perception. Using large-scale population recordings in awake mice, we find distinct coding strategies facilitate non-interfering representations of odor identity and intensity in piriform cortex. Simply knowing which neurons were activated is sufficient to accurately represent odor identity, with no additional information about identity provided by spike time or spike count. Decoding analyses indicate that cortical odor representations are not sparse. Odorant concentration had no systematic effect on spike counts, indicating that rate cannot encode intensity. Instead, odor intensity can be encoded by temporal features of the population response. We found a subpopulation of rapid, largely concentration-invariant responses was followed by another population of responses whose latencies systematically decreased at higher concentrations. Cortical inhibition transforms olfactory bulb output to sharpen these dynamics. Our data therefore reveal complementary coding strategies that can selectively represent distinct features of a stimulus.


Assuntos
Neurônios/fisiologia , Odorantes , Percepção Olfatória , Córtex Piriforme/fisiologia , Potenciais de Ação , Animais , Camundongos
18.
Elife ; 52016 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-27177421

RESUMO

Perturbations in neural circuits can provide mechanistic understanding of the neural correlates of behavior. In M71 transgenic mice with a "monoclonal nose", glomerular input patterns in the olfactory bulb are massively perturbed and olfactory behaviors are altered. To gain insights into how olfactory circuits can process such degraded inputs we characterized odor-evoked responses of olfactory bulb mitral cells and interneurons. Surprisingly, calcium imaging experiments reveal that mitral cell responses in M71 transgenic mice are largely normal, highlighting a remarkable capacity of olfactory circuits to normalize sensory input. In vivo whole cell recordings suggest that feedforward inhibition from olfactory bulb periglomerular cells can mediate this signal normalization. Together, our results identify inhibitory circuits in the olfactory bulb as a mechanistic basis for many of the behavioral phenotypes of mice with a "monoclonal nose" and highlight how substantially degraded odor input can be transformed to yield meaningful olfactory bulb output.


Assuntos
Rede Nervosa/fisiologia , Rede Nervosa/fisiopatologia , Neurônios/fisiologia , Bulbo Olfatório/fisiologia , Bulbo Olfatório/fisiopatologia , Animais , Camundongos Transgênicos , Transtornos do Olfato/genética
19.
Neuron ; 88(5): 852-854, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26637793

RESUMO

A study by Jeanne and Wilson (2015) describes a circuit and determines the distinct neural circuit mechanisms that allow a signal to be represented with both speed and accuracy in the Drosophila olfactory system.


Assuntos
Potenciais de Ação/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Condutos Olfatórios/citologia , Condutos Olfatórios/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais
20.
J Neurosci ; 32(9): 2964-75, 2012 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-22378870

RESUMO

Within the olfactory system, information flow from the periphery onto output mitral cells (MCs) of the olfactory bulb (OB) has been thought to be mediated by direct synaptic inputs from olfactory sensory neurons (OSNs). Here, we performed patch-clamp measurements in rat and mouse OB slices to investigate mechanisms of OSN signaling onto MCs, including the assumption of a direct path, using electrical and optogenetic stimulation methods that selectively activated OSNs. We found that MCs are in fact not typically activated by direct OSN inputs and instead require a multistep, diffuse mechanism involving another glutamatergic cell type, the tufted cells. The preference for a multistep mechanism reflects the fact that signals arising from direct OSN inputs are drastically shunted by connexin 36-mediated gap junctions on MCs, but not tufted cells. An OB circuit with tufted cells intermediate between OSNs and MCs suggests that considerable processing of olfactory information occurs before its reaching MCs.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Bulbo Olfatório/citologia , Bulbo Olfatório/fisiologia , Transdução de Sinais/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...