Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Am J Physiol Renal Physiol ; 326(4): F622-F634, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38420675

RESUMO

Calciprotein particles (CPPs) provide an efficient mineral buffering system to prevent the complexation of phosphate and calcium in the circulation. However, in chronic kidney disease (CKD), the phosphate load exceeds the mineral buffering capacity, resulting in the formation of crystalline CPP2 particles. CPP2 have been associated with cardiovascular events and mortality. Moreover, CPP2 have been demonstrated to induce calcification in vitro. In this study, we examined the fate of CPP2 in a rat model of CKD. Calcification was induced in Sprague-Dawley rats by 5/6 nephrectomy (5/6-Nx) combined with a high-phosphate diet. Control rats received sham surgery and high-phosphate diet. Twelve weeks after surgery, kidney failure was significantly induced in 5/6-Nx rats as determined by enhanced creatinine and urea plasma levels and abnormal kidney histological architecture. Subsequently, radioactive and fluorescent (FITC)-labeled CPP2 ([89Zr]Zr-CPP2-FITC) were injected intravenously to determine clearance in vivo. Using positron emission tomography scans and radioactive biodistribution measurements, it was demonstrated that [89Zr]Zr-CPP2-FITC are mainly present in the liver and spleen in both 5/6-Nx and sham rats. Immunohistochemistry showed that [89Zr]Zr-CPP2-FITC are predominantly taken up by Kupffer cells and macrophages. However, [89Zr]Zr-CPP2-FITC could also be detected in hepatocytes. In the different parts of the aorta and in the blood, low values of [89Zr]Zr-CPP2-FITC were detectable, independent of the presence of calcification. CPP2 are cleared rapidly from the circulation by the liver and spleen in a rat model of CKD. In the liver, Kupffer cells, macrophages, and hepatocytes contribute to CPP2 clearance.NEW & NOTEWORTHY Calciprotein particles (CPPs) buffer calcium and phosphate in the blood to prevent formation of crystals. In CKD, increased phosphate levels may exceed the buffering capacity of CPPs, resulting in crystalline CPPs that induce calcification. This study demonstrates that labeled CPPs are predominantly cleared from the circulation in the liver by Kupffer cells, macrophages, and hepatocytes. Our results suggest that targeting liver CPP clearance may reduce the burden of crystalline CPP in the development of vascular calcification.


Assuntos
Insuficiência Renal Crônica , Calcificação Vascular , Ratos , Animais , Baço/metabolismo , Cálcio/metabolismo , Fluoresceína-5-Isotiocianato , Distribuição Tecidual , Ratos Sprague-Dawley , Calcificação Vascular/diagnóstico por imagem , Calcificação Vascular/etiologia , Minerais , Fígado/metabolismo , Fosfatos , Insuficiência Renal Crônica/patologia
2.
Cells ; 12(10)2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37408254

RESUMO

Fibroblast activation protein (FAP), expressed on cancer-associated fibroblasts, is a target for diagnosis and therapy in multiple tumour types. Strategies to systemically deplete FAP-expressing cells show efficacy; however, these induce toxicities, as FAP-expressing cells are found in normal tissues. FAP-targeted photodynamic therapy offers a solution, as it acts only locally and upon activation. Here, a FAP-binding minibody was conjugated to the chelator diethylenetriaminepentaacetic acid (DTPA) and the photosensitizer IRDye700DX (DTPA-700DX-MB). DTPA-700DX-MB showed efficient binding to FAP-overexpressing 3T3 murine fibroblasts (3T3-FAP) and induced the protein's dose-dependent cytotoxicity upon light exposure. Biodistribution of DTPA-700DX-MB in mice carrying either subcutaneous or orthotopic tumours of murine pancreatic ductal adenocarcinoma cells (PDAC299) showed maximal tumour uptake of 111In-labelled DTPA-700DX-MB at 24 h post injection. Co-injection with an excess DTPA-700DX-MB reduced uptake, and autoradiography correlated with FAP expression in the stromal tumour region. Finally, in vivo therapeutic efficacy was determined in two simultaneous subcutaneous PDAC299 tumours; only one was treated with 690 nm light. Upregulation of an apoptosis marker was only observed in the treated tumours. In conclusion, DTPA-700DX-MB binds to FAP-expressing cells and targets PDAC299 tumours in mice with good signal-to-background ratios. Furthermore, the induced apoptosis indicates the feasibility of targeted depletion of FAP-expressing cells with photodynamic therapy.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Pancreáticas , Fotoquimioterapia , Animais , Camundongos , Serina Endopeptidases/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Distribuição Tecidual , Proteínas de Membrana/metabolismo , Neoplasias Pancreáticas/patologia , Fibroblastos/metabolismo , Ácido Pentético/metabolismo
3.
Pharmaceutics ; 15(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36986657

RESUMO

The therapeutic potential of minigastrin (MG) analogs for the treatment of cholecystokinin-2 receptor (CCK2R)-expressing cancers is limited by poor in vivo stability or unfavorable accumulation in non-target tissues. Increased stability against metabolic degradation was achieved by modifying the C-terminal receptor-specific region. This modification led to significantly improved tumor targeting properties. In this study, further N-terminal peptide modifications were investigated. Two novel MG analogs were designed starting from the amino acid sequence of DOTA-MGS5 (DOTA-DGlu-Ala-Tyr-Gly-Trp-(N-Me)Nle-Asp-1Nal-NH2). Introduction of a penta-DGlu moiety and replacement of the four N-terminal amino acids by a non-charged hydrophilic linker was investigated. Retained receptor binding was confirmed using two CCK2R-expressing cell lines. The effect on metabolic degradation of the new 177Lu-labeled peptides was studied in human serum in vitro, as well as in BALB/c mice in vivo. The tumor targeting properties of the radiolabeled peptides were assessed using BALB/c nude mice bearing receptor-positive and receptor-negative tumor xenografts. Both novel MG analogs were found to have strong receptor binding, enhanced stability, and high tumor uptake. Replacement of the four N-terminal amino acids by a non-charged hydrophilic linker lowered the absorption in the dose-limiting organs, whereas introduction of the penta-DGlu moiety increased uptake in renal tissue.

4.
Eur J Nucl Med Mol Imaging ; 49(13): 4736-4747, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35930033

RESUMO

PURPOSE: Prostate-specific membrane antigen (PSMA)-targeted PET/CT has become increasingly important in the management of prostate cancer, especially in localization of biochemical recurrence (BCR). PSMA-targeted PET/CT imaging with long-lived radionuclides as 89Zr (T1/2 = 78.4 h) may improve diagnostics by allowing data acquisition on later time points. In this study, we present our first clinical experience including preliminary biodistribution and dosimetry data of [89Zr]Zr-PSMA-617 PET/CT in patients with BCR of prostate cancer. METHODS: Seven patients with BCR of prostate cancer who revealed no (n = 4) or undetermined (n = 3) findings on [68Ga]Ga-PSMA-11 PET/CT imaging were referred to [89Zr]Zr-PSMA-617 PET/CT. PET/CT imaging was performed 1 h, 24 h, 48 h, and 72 h post injection (p.i.) of 111 ± 11 MBq [89Zr]Zr-PSMA-617 (mean ± standard deviation). Normal organ distribution and dosimetry were determined. Lesions visually considered as suggestive of prostate cancer were quantitatively analyzed. RESULTS: Intense physiological uptake was observed in the salivary and lacrimal glands, liver, spleen, kidneys, intestine and urinary tract. The parotid gland received the highest absorbed dose (0.601 ± 0.185 mGy/MBq), followed by the kidneys (0.517 ± 0.125 mGy/MBq). The estimated overall effective dose for the administration of 111 MBq was 10.1 mSv (0.0913 ± 0.0118 mSv/MBq). In 6 patients, and in particular in 3 of 4 patients with negative [68Ga]Ga-PSMA-11 PET/CT, at least one prostate cancer lesion was detected in [89Zr]Zr-PSMA-617 PET/CT imaging at later time points. The majority of tumor lesions were first visible at 24 h p.i. with continuously increasing tumor-to-background ratio over time. All tumor lesions were detectable at 48 h and 72 h p.i. CONCLUSION: [89Zr]Zr-PSMA-617 PET/CT imaging is a promising new diagnostic tool with acceptable radiation exposure for patients with prostate cancer especially when [68Ga]Ga-PSMA-11 PET/CT imaging fails detecting recurrent disease. The long half-life of 89Zr enables late time point imaging (up to 72 h in our study) with increased tracer uptake in tumor lesions and higher tumor-to-background ratios allowing identification of lesions non-visible on [68Ga]Ga-PSMA-11 PET/CT imaging.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata , Masculino , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Radioisótopos de Gálio , Distribuição Tecidual , Projetos Piloto , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Radioisótopos
5.
Neoplasia ; 32: 100826, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35878454

RESUMO

Sunitinib is an effective treatment for patients with metastatic Renal Cell Carcinoma (mRCC) but ultimately resistance occurs. The aim of this study was to investigate sunitinib resistance in RCCs and to develop therapeutic combination strategies with targeted radioimmunotherapy (RIT). We studied two RCC models, analyzed Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) and AXL/MET expression and performed therapy studies in Balb/cnu/nu mice combining sunitinib and [177Lu]Lu-cG250 RIT (6.5 MBq/10 µg), specifically targeting RCC cells. pAXL and pMET were expressed in sunitinib-resistant SK-RC-52 and absent in sunitinib-sensitive NU12. NGS evaluation showed that expression of VEGFA, VEGFB, VEGFD, PGF and VEGFR1,2,3 was higher and expression of VEGFC and PDGFA was lower in NU12 than in SK-RC-52. Therapy studies combining sunitinib with [177Lu]Lu-cG250 RIT showed that the best response in mice with "resistant" SK-RC-52 tumors was observed with two cycles of Sunitinib and [177Lu]Lu-cG250 RIT, probably due to increased vascular permeability by sunitinib treatment. In the "sensitive" NU12 model, two cycles of [177Lu]Lu-cG250 RIT and two cycles of combination treatment were equally effective. Enhanced therapeutic efficacy was achieved when two agents ([177Lu]Lu-cG250 RIT and sunitinib) that on their own did not induce satisfactory response levels, are combined. Our findings provide a promising new therapeutic strategy for patients with advanced RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Linhagem Celular Tumoral , Camundongos , Camundongos Nus , Radioimunoterapia , Sunitinibe , Fator A de Crescimento do Endotélio Vascular
6.
Pharmaceuticals (Basel) ; 15(5)2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35631396

RESUMO

In this study, we compared the tumor-targeting properties, therapeutic efficacy, and tolerability of the humanized anti-CAIX antibody (hG250) labeled with either the α-emitter actinium-225 (225Ac) or the ß--emitter lutetium-177 (177Lu) in mice. BALB/c nude mice were grafted with human renal cell carcinoma SK-RC-52 cells and intravenously injected with 30 µg [225Ac] Ac-DOTA-hG250 (225Ac-hG250) or 30 µg [177Lu] Lu-DOTA-hG250 (177Lu-hG250), followed by ex vivo biodistribution studies. Therapeutic efficacy was evaluated in mice receiving 5, 15, and 25 kBq of 225Ac-hG250; 13 MBq of 177Lu-hG250; or no treatment. Tolerability was evaluated in non-tumor-bearing animals. High tumor uptake of both radioimmunoconjugates was observed and increased up to day 7 (212.8 ± 50.2 %IA/g vs. 101.0 ± 18.4 %IA/g for 225Ac-hG250 and 177Lu-hG250, respectively). Survival was significantly prolonged in mice treated with 15 kBq 225Ac-hG250, 25 kBq 225Ac-hG250, and 13 MBq 177Lu-hG250 compared to untreated control (p < 0.05). Non-tumor-bearing mice that received single-dose treatment with 15 or 25 kBq 225Ac-hG250 showed weight loss at the end of the experiment (day 126), and immunohistochemical analysis suggested radiation-induced nephrotoxicity. These results demonstrate the therapeutic potential of CAIX-targeted α-therapy in renal cell carcinoma. Future studies are required to find an optimal balance between therapeutic efficacy and toxicity.

7.
Clin Nucl Med ; 47(5): 435-436, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35234197

RESUMO

ABSTRACT: For localization of biochemical recurrence of prostate cancer, 68Ga-PSMA-11 PET/CT imaging was performed in a 66-year-old man with no suspicious findings at 1 hour p.i. Additional 89Zr-PSMA-617 PET/CT revealed a small local recurrence in the prostate bed, facilitating consecutive local therapy. This interesting image points to the potential of PET/CT with 89Zr-labeled PSMA ligands, for example, 89Zr-PSMA-617, for identifying the source of biochemical recurrence despite otherwise negative imaging including conventional PSMA PET/CT.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata , Idoso , Dipeptídeos , Ácido Edético , Isótopos de Gálio , Radioisótopos de Gálio , Compostos Heterocíclicos com 1 Anel , Humanos , Masculino , Recidiva Local de Neoplasia/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Antígeno Prostático Específico , Neoplasias da Próstata/diagnóstico por imagem , Radioisótopos , Zircônio
8.
Mol Pharm ; 19(10): 3511-3520, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-35044182

RESUMO

Hypoxic areas are present in the majority of solid tumors, and hypoxia is associated with resistance to therapies and poor outcomes. A transmembrane protein that is upregulated by tumor cells that have adapted to hypoxic conditions is carbonic anhydrase IX (CAIX). Therefore, noninvasive imaging of CAIX could be of prognostic value, and it could steer treatment strategies. The aim of this study was to compare variants of CAIX-binding VHH B9, with and without a C-terminal albumin-binding domain with varying affinity (ABDlow and ABDhigh), for SPECT imaging of CAIX expression. The binding affinity and internalization of the various B9-variants were analyzed using SK-RC-52 cells. Biodistribution studies were performed in mice with subcutaneous SCCNij153 human head and neck cancer xenografts. Tracer uptake was determined by ex vivo radioactivity counting and visualized by SPECT/CT imaging. Furthermore, autoradiography images of tumor sections were spatially correlated with CAIX immunohistochemistry. B9-variants demonstrated a similar moderate affinity for CAIX in vitro. Maximal tumor uptake and acceptable tumor-to-blood ratios were found in the SCCNij153 model at 4 h post injection for [111In]In-DTPA-B9 (0.51 ± 0.08%ID/g and 8.1 ± 0.85, respectively), 24 h post injection for [111In]In-DTPA-B9-ABDlow (2.39 ± 0.44%ID/g and 3.66 ± 0.81, respectively) and at 72 h post injection for [111In]In-DTPA-B9-ABDhigh (8.7 ± 1.34%ID/g and 2.43 ± 0.15, respectively). An excess of unlabeled monoclonal anti-CAIX antibody efficiently inhibited tumor uptake of [111In]In-DTPA-B9, while only a partial reduction of [111In]In-DTPA-B9-ABDlow and [111In]In-DTPA-B9-ABDhigh uptake was found. Immunohistochemistry and autoradiography images showed colocalization of all B9-variants with CAIX expression; however, [111In]In-DTPA-B9-ABDlow and [111In]In-DTPA-B9-ABDhigh also accumulated in non-CAIX expressing regions. Tumor uptake of [111In]In-DTPA-B9-ABDlow and [111In]In-DTPA-B9-ABDhigh, but not of [111In]In-DTPA-B9, could be visualized with SPECT/CT imaging. In conclusion, [111In]In-DTPA-B9 has a high affinity to CAIX and shows specific targeting to CAIX in head and neck cancer xenografts. The addition of ABD prolonged plasma half-life, increased tumor uptake, and enabled SPECT/CT imaging. This uptake was, however, partly CAIX- independent, precluding the ABD-tracers for use in hypoxia quantification in this tumor type.


Assuntos
Anticorpos Monoclonais , Neoplasias de Cabeça e Pescoço , Albuminas/metabolismo , Animais , Anticorpos Monoclonais/química , Antígenos de Neoplasias/metabolismo , Anidrase Carbônica IX/metabolismo , Linhagem Celular Tumoral , Meia-Vida , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Humanos , Hipóxia , Camundongos , Ácido Pentético , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único
9.
Eur J Nucl Med Mol Imaging ; 49(7): 2425-2435, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35029739

RESUMO

INTRODUCTION: The first generation ligands for prostate-specific membrane antigen (PSMA)-targeted radio- and fluorescence-guided surgery followed by adjuvant photodynamic therapy (PDT) have already shown the potential of this approach. Here, we developed three new photosensitizer-based dual-labeled PSMA ligands by crucial modification of existing PSMA ligand backbone structures (PSMA-1007/PSMA-617) for multimodal imaging and targeted PDT of PCa. METHODS: Various new PSMA ligands were synthesized using solid-phase chemistry and provided with a DOTA chelator for 111In labeling and the fluorophore/photosensitizer IRDye700DX. The performance of three new dual-labeled ligands was compared with a previously published first-generation ligand (PSMA-N064) and a control ligand with an incomplete PSMA-binding motif. PSMA specificity, affinity, and PDT efficacy of these ligands were determined in LS174T-PSMA cells and control LS174T wildtype cells. Tumor targeting properties were evaluated in BALB/c nude mice with subcutaneous LS174T-PSMA and LS174T wildtype tumors using µSPECT/CT imaging, fluorescence imaging, and biodistribution studies after dissection. RESULTS: In order to synthesize the new dual-labeled ligands, we modified the PSMA peptide linker by substitution of a glutamic acid into a lysine residue, providing a handle for conjugation of multiple functional moieties. Ligand optimization showed that the new backbone structure leads to high-affinity PSMA ligands (all IC50 < 50 nM). Moreover, ligand-mediated PDT led to a PSMA-specific decrease in cell viability in vitro (P < 0.001). Linker modification significantly improved tumor targeting compared to the previously developed PSMA-N064 ligand (≥ 20 ± 3%ID/g vs 14 ± 2%ID/g, P < 0.01) and enabled specific visualization of PMSA-positive tumors using both radionuclide and fluorescence imaging in mice. CONCLUSION: The new high-affinity dual-labeled PSMA-targeting ligands with optimized backbone compositions showed increased tumor targeting and enabled multimodal image-guided PCa surgery combined with targeted photodynamic therapy.


Assuntos
Fotoquimioterapia , Neoplasias da Próstata , Animais , Antígenos de Superfície/metabolismo , Linhagem Celular Tumoral , Glutamato Carboxipeptidase II/metabolismo , Humanos , Ligantes , Masculino , Camundongos , Camundongos Nus , Imagem Multimodal , Fármacos Fotossensibilizantes/uso terapêutico , Medicina de Precisão , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/terapia , Distribuição Tecidual
10.
Eur J Nucl Med Mol Imaging ; 49(6): 2064-2076, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34932154

RESUMO

RATIONALE: Prolonged in vivo evaluation of PSMA tracers could improve tumor imaging and patient selection for 177Lu-PSMA-617 and 177Lu-PSMA-I&T. In this study, we present the radiolabeling method of PSMA-617 and PSMA-I&T with the long-lived positron emitter 89Zr to enable PET imaging up to 7 days post-injection. We compared the biodistribution of 89Zr-PSMA-617 and 89Zr-PSMA-I&T to those of 177Lu-PSMA-617 and 177Lu-PSMA-I&T, respectively, in a PSMA+ xenograft model. Moreover, we provide the first human 89Zr-PSMA-617 images. MATERIALS AND METHODS: PSMA ligands were labeled with 50-55 MBq [89Zr]ZrCl4 using a two-step labeling protocol. For biodistribution, BALB/c nude mice bearing PSMA+ and PSMA- xenografts received 0.6 µg (0.6-1 MBq) of 89Zr-PSMA-617, 89Zr-PSMA-I&T, 177Lu-PSMA-617, or 177Lu-PSMA-I&T intravenously. Ex vivo biodistribution and PET/SPECT imaging were performed up to 168 h post-injection. Dosimetry was performed from the biodistribution data. The patient received 90.5 MBq 89Zr-PSMA-617 followed by PET/CT imaging. RESULTS: 89Zr-labeled PSMA ligands showed a comparable ex vivo biodistribution to its respective 177Lu-labeled counterparts with high tumor accumulation in the PSMA+ xenografts. However, using a dose estimation model for 177Lu, absorbed radiation dose in bone and kidneys differed among the 177Lu-PSMA and 89Zr-PSMA tracers. 89Zr-PSMA-617 PET in the first human patient showed high contrast of PSMA expressing tissues up to 48 h post-injection. CONCLUSION: PSMA-617 and PSMA-I&T were successfully labeled with 89Zr and demonstrated high uptake in PSMA+ xenografts, which enabled PET up to 168 h post-injection. The biodistribution of 89Zr-PSMA-I&T and 89Zr-PSMA-617 resembled that of 177Lu-PSMA-I&T and 177Lu-PSMA-617, respectively. The first patient 89Zr-PSMA-617 PET images were of high quality warranting further clinical investigation.


Assuntos
Lutécio , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Animais , Linhagem Celular Tumoral , Dipeptídeos , Compostos Heterocíclicos com 1 Anel , Humanos , Ligantes , Camundongos , Camundongos Nus , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Antígeno Prostático Específico , Radioisótopos , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual
11.
Cancers (Basel) ; 13(20)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34680219

RESUMO

The exponential growth of research on cell-based therapy is in major need of reliable and sensitive tracking of a small number of therapeutic cells to improve our understanding of the in vivo cell-targeting properties. 111In-labeled poly(lactic-co-glycolic acid) with a primary amine endcap nanoparticles ([111In]In-PLGA-NH2 NPs) were previously used for cell labeling and in vivo tracking, using SPECT/CT imaging. However, to detect a low number of cells, a higher sensitivity of PET is preferred. Therefore, we developed 89Zr-labeled NPs for ex vivo cell labeling and in vivo cell tracking, using PET/MRI. We intrinsically and efficiently labeled PLGA-NH2 NPs with [89Zr]ZrCl4. In vitro, [89Zr]Zr-PLGA-NH2 NPs retained the radionuclide over a period of 2 weeks in PBS and human serum. THP-1 (human monocyte cell line) cells could be labeled with the NPs and retained the radionuclide over a period of 2 days, with no negative effect on cell viability (specific activity 279 ± 10 kBq/106 cells). PET/MRI imaging could detect low numbers of [89Zr]Zr-THP-1 cells (10,000 and 100,000 cells) injected subcutaneously in Matrigel. Last, in vivo tracking of the [89Zr]Zr-THP-1 cells upon intravenous injection showed specific accumulation in local intramuscular Staphylococcus aureus infection and infiltration into MDA-MB-231 tumors. In conclusion, we showed that [89Zr]Zr-PLGA-NH2 NPs can be used for immune-cell labeling and subsequent in vivo tracking of a small number of cells in different disease models.

12.
Brain Behav Immun ; 95: 321-329, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33839233

RESUMO

Despite increasing evidence that immune training within the brain may affect the clinical course of neuropsychiatric diseases, data on cerebral immune tolerance are scarce. This study in healthy volunteers examined the trajectory of the immune response systemically and within the brain following repeated lipopolysaccharide (LPS) challenges. Five young males underwent experimental human endotoxemia (intravenous administration of 2 ng/kg LPS) twice with a 7-day interval. The systemic immune response was assessed by measuring plasma cytokine levels. Four positron emission tomography (PET) examinations, using the translocator protein (TSPO) ligand 18F-DPA-714, were performed in each participant, to assess brain immune cell activation prior to and 5 hours after both LPS challenges. The first LPS challenge caused a profound systemic inflammatory response and resulted in a 53% [95%CI 36-71%] increase in global cerebral 18F-DPA-714 binding (p < 0.0001). Six days after the first challenge, 18F-DPA-714 binding had returned to baseline levels (p = 0.399). While the second LPS challenge resulted in a less pronounced systemic inflammatory response (i.e. 77 ± 14% decrease in IL-6 compared to the first challenge), cerebral inflammation was not attenuated, but decreased below baseline, illustrated by a diffuse reduction of cerebral 18F-DPA-714 binding (-38% [95%CI -47 to -28%], p < 0.0001). Our findings constitute evidence for in vivo immunological reprogramming in the brain following a second inflammatory insult in healthy volunteers, which could represent a neuroprotective mechanism. These results pave the way for further studies on immunotolerance in the brain in patients with systemic inflammation-induced cerebral dysfunction.


Assuntos
Encéfalo/imunologia , Inflamação/imunologia , Neuroimagem , Encéfalo/diagnóstico por imagem , Humanos , Imunidade , Masculino , Tomografia por Emissão de Pósitrons , Receptores de GABA/metabolismo
13.
Theranostics ; 11(4): 1527-1541, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33408764

RESUMO

Incomplete resection of prostate cancer (PCa) occurs in 15%-50% of PCa patients. Disease recurrence negatively impacts oncological outcome. The use of radio-, fluorescent-, or photosensitizer-labeled ligands to target the prostate-specific membrane antigen (PSMA) has become a well-established method for the detection and treatment of PCa. Methods: Here, we developed and characterized multimodal [111In]In-DOTA(GA)-IRDye700DX-PSMA ligands, varying in their molecular composition, for use in intraoperative radiodetection, fluorescence imaging and targeted photodynamic therapy of PCa lesions. PSMA-specificity of these ligands was determined in xenograft tumor models and on fresh human PCa biopsies. Results: Ligand structure optimization showed that addition of the photosensitizer (IRDye700DX) and additional negative charges significantly increased ligand uptake in PSMA-expressing tumors. Moreover, an ex vivo incubation study on human tumor biopsies confirmed the PSMA-specificity of these ligands on human samples, bridging the gap to the clinical situation. Conclusion: We developed a novel PSMA-targeting ligand, optimized for multimodal image-guided PCa surgery combined with targeted photodynamic therapy.


Assuntos
Antígenos de Superfície/metabolismo , Glutamato Carboxipeptidase II/metabolismo , Fármacos Fotossensibilizantes/química , Prostatectomia/métodos , Neoplasias da Próstata/diagnóstico , Compostos Radiofarmacêuticos/química , Cirurgia Assistida por Computador/métodos , Animais , Apoptose , Proliferação de Células , Humanos , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Prognóstico , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/cirurgia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
14.
NMR Biomed ; 33(10): e4362, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32662543

RESUMO

Reprogramming of energy metabolism in the development of prostate cancer can be exploited for a better diagnosis and treatment of the disease. The goal of this study was to determine whether differences in glucose and pyruvate metabolism of human prostate cancer cells with dissimilar aggressivenesses can be detected using hyperpolarized [1-13 C]pyruvate MRS and [18 F]FDG-PET imaging, and to evaluate whether these measures correlate. For this purpose, we compared murine xenografts of human prostate cancer LNCaP cells with those of more aggressive PC3 cells. [1-13 C]pyruvate was hyperpolarized by dissolution dynamic nuclear polarization (dDNP) and [1-13 C]pyruvate to lactate conversion was followed by 13 C MRS. Subsequently [18 F]FDG uptake was investigated by static and dynamic PET measurements. Standard uptake values (SUVs) for [18 F]FDG were significantly higher for xenografts of PC3 compared with those of LNCaP. However, we did not observe a difference in the average apparent rate constant kpl of 13 C label exchange from pyruvate to lactate between the tumor variants. A significant negative correlation was found between SUVs from [18 F]FDG PET measurements and kpl values for the xenografts of both tumor types. The kpl rate constant may be influenced by various factors, and studies with a range of prostate cancer cells in suspension suggest that LDH inhibition by pyruvate may be one of these. Our results indicate that glucose and pyruvate metabolism in the prostate cancer cell models differs from that in other tumor models and that [18 F]FDG-PET can serve as a valuable complementary tool in dDNP studies of aggressive prostate cancer with [1-13 C]pyruvate.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Fluordesoxiglucose F18/química , Glucose/metabolismo , Lactatos/metabolismo , Tomografia por Emissão de Pósitrons , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo , Ácido Pirúvico/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Linhagem Celular Tumoral , Metabolismo Energético , Humanos , Cinética , Masculino , Camundongos Endogâmicos BALB C , Distribuição Tecidual
15.
Sci Rep ; 9(1): 18898, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31827111

RESUMO

Hypoxia-induced carbonic anhydrase IX (CAIX) expression is a prognostic marker in solid tumors. In recent years many radiotracers have been developed, but a fair comparison of these compounds is not possible because of the diversity in tumor models and other experimental parameters. In this study we performed a direct in vivo comparison of three promising CAIX targeting radiotracers in xenografted head and neck cancer models. The biodistribution of [111In]In-DOTA-ZCAIX:2 was directly compared with [111In]In-DTPA-G250-F(ab')2 and [111In] In-DTPA-G250 in female BALB/C nu/nu mice bearing two HNSCC xenografts with different levels of CAIX expression. In vivo biodistribution was quantified by means of microSPECT/CT scans and ex vivo biodistribution was determined with the use of a γ-counter. Tumors were snap frozen and sections were stained for CAIX expression, vessels, hypoxia (pimonidazole) and tumor blood perfusion. Tracer uptake was significantly higher in SSCNij153 tumors compared to SCCNij185 tumors for [111In]In-DOTA-HE3-ZCAIX:2: 0.32 ± 0.03 versus 0.18 ± 0.01%ID/g,(p = 0.003) 4 h p.i., for [111In]In-DTPA-girentuximab-F(ab')2: 3.0 ± 0.5%ID/g and 1.2 ± 0.1%ID/g (p = 0.03), 24 h p.i. and for [111In]In-DTPA-girentuximab: 30 ± 2.1%ID/g and 7.0 ± 1.0%ID/g (p = 0.0002) 72 h p.i. SPECT imaging with both [111In]In-DTPA-girentuximab-F(ab')2 and [111In]In-DTPA-girentuximab showed a clear difference in tracer distribution between the two tumor models. The whole IgG, i.e. [111In]In-DTPA-girentuximab, showed the highest tumor-to-muscle ratio. We showed that different CAIX-targeting radiotracers can discriminate a low CAIX-expressing tumor from a high CAIX-expressing head and neck cancer xenografts model. In these hypoxic head and neck xenograft models [111In]In-DTPA-girentuximab showed the most promising results.


Assuntos
Anidrase Carbônica IX/metabolismo , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodos , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto
16.
EJNMMI Res ; 9(1): 86, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31485790

RESUMO

BACKGROUND: Image-guided surgery may improve surgical outcome for colorectal cancer patients. Here, we evaluated the feasibility of a pretargeting strategy for multimodal imaging in colorectal cancer using an anti-carcinoembryonic antigen (CEA) x anti-histamine-succinyl-glycine (HSG) bispecific antibody (TF2) in conjunction with the dual-labeled diHSG peptide (RDC018), using both a fluorophore for near-infrared fluorescence imaging and a chelator for radiolabeling. METHODS: Nude mice with subcutaneous (s.c) CEA-expressing LS174T human colonic tumors and CEA-negative control tumors were injected with TF2. After 16 h, different doses of 111In-labeled IMP-288 (non-fluorescent) or its fluorescent derivative RDC018 were administered to compare biodistributions. MicroSPECT/CT and near-infrared fluorescence imaging were performed 2 and 24 h after injection. Next, the biodistribution of the dual-labeled humanized anti-CEA IgG antibody [111In]In-DTPA-hMN-14-IRDye800CW (direct targeting) was compared with the biodistribution of 111In-RDC018 in mice with TF2-pretargeted tumors, using fluorescence imaging and gamma counting. Lastly, mice with intraperitoneal LS174T tumors underwent near-infrared fluorescence image-guided resection combined with pre- and post-resection microSPECT/CT imaging. RESULTS: 111In-RDC018 showed specific tumor targeting in pretargeted CEA-positive tumors (21.9 ± 4.5 and 10.0 ± 4.7% injected activity per gram (mean ± SD %IA/g), at 2 and 24 hours post-injection (p.i.), respectively) and a biodistribution similar to 111In-IMP288. Both fluorescence and microSPECT/CT images confirmed preferential tumor accumulation. At post mortem dissection, intraperitoneal tumors were successfully identified and removed using pretargeting with TF2 and 111In-RDC018. CONCLUSION: A pretargeted approach for multimodal image-guided resection of colorectal cancer in a preclinical xenograft model is feasible, enables preoperative SPECT/CT, and might facilitate intraoperative fluorescence imaging.

17.
Theranostics ; 9(10): 2924-2938, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31244933

RESUMO

Rationale: Prostate cancer (PCa) recurrences after surgery frequently occur. To improve the outcome after surgical resection of the tumor, the theranostic multimodal anti-PSMA targeting agent 111In-DTPA-D2B-IRDye700DX was developed and characterized for both pre- and intra-operative tumor localization and eradication of (residual) tumor tissue by PSMA-targeted photodynamic therapy (tPDT), which is a highly selective cancer treatment based on targeting molecules conjugated to photosensitizers that can induce cell destruction upon exposure to near-infrared (NIR) light. Methods: The anti-PSMA monoclonal antibody D2B was conjugated with IRDye700DX and DTPA and subsequently radiolabeled with 111In. To determine the optimal dose and time point for tPDT, BALB/c nude mice with PSMA-expressing (PSMA+) s.c. LS174T-PSMA xenografts received the conjugate (24-240 µg/mouse) intravenously (8 MBq/mouse) followed by µSPECT/CT, near-infrared fluorescence imaging, and ex vivo biodistribution at 24, 48, 72 and 168 h p.i. Tumor growth of LS174T-PSMA xenografts and overall survival of mice treated with 1-3 times of NIR light irradiation (50, 100, 150 J/cm2) 24 h after injection of 80 µg of DTPA-D2B-IRDye700DX was compared to control conditions. Results: Highest specific tumor uptake was observed at conjugate doses of 80 µg/mouse. Biodistribution revealed no significant difference in tumor uptake in mice at 24, 48, 72 and 168 h p.i. PSMA+ tumors were clearly visualized with both µSPECT/CT and NIR fluorescence imaging. Overall survival in mice treated with 80 µg of DTPA-D2B-IRDye700DX and 1x 150 J/cm2 of NIR light at 24 h p.i. was significantly improved compared to the control group receiving neither conjugate nor NIR light (73 days vs. 16 days, respectively, p=0.0453). Treatment with 3x 150 J/cm2 resulted in significantly prolonged survival compared to treatment with 3x 100 J/cm2 (p = 0.0067) and 3x 50 J/cm2 (p = 0.0338). Principal conclusions:111In-DTPA-D2B-IRDye700DX can be used for pre- and intra-operative detection of PSMA+ tumors with radionuclide and NIR fluorescence imaging and PSMA-targeted PDT. PSMA-tPDT using this multimodal agent resulted in significant prolongation of survival and shows great potential for treatment of (metastasized) prostate cancer.


Assuntos
Antígenos de Superfície/análise , Glutamato Carboxipeptidase II/análise , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/tratamento farmacológico , Coloração e Rotulagem/métodos , Nanomedicina Teranóstica/métodos , Animais , Modelos Animais de Doenças , Xenoenxertos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Terapia de Alvo Molecular/métodos , Transplante de Neoplasias , Imagem Óptica/métodos , Fotoquimioterapia/métodos , Cirurgia Assistida por Computador/métodos
18.
J Nucl Med ; 60(7): 1017-1022, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30655329

RESUMO

The aim was to compare the prostate-specific membrane antigen (PSMA)-targeting characteristics of PSMA-11, radiolabeled on the basis of chelation of 18F-AlF, with those of 68Ga-PSMA-11 to image PSMA-expressing xenografts. Methods: Labeling of 18F-AlF-PSMA-11 via 18F-AlF-complexation was performed as described by Boschi et al. and Malik et al. with minor modifications. Several conditions for the quality control of the labeling of 18F-AlF-PSMA-11 via 18F-AlF-complexation were evaluated to characterize the influence of ethanol, acetonitrile, and trifluoroacetic acid on the stability of the labeled product. Internalization kinetics of 18F-AlF-PSMA-11 were compared with those of 68Ga-PSMA-11 using PSMA-expressing LNCaP tumor cells. Biodistribution of 18F-AlF-PSMA-11 (0.26 nmol/mouse, 8-9 MBq/mouse) in male BALB/c nude mice with PSMA-expressing subcutaneous LS174T-PSMA tumors was compared with that of 68Ga-PSMA-11 at 1 and 2 h after injection. In addition, 18F-AlF-PSMA-11 PET/CT and 68Ga-PSMA-11 PET/CT imaging were performed at 1 and 2 h after injection. Results: In contrast to 68Ga-PSMA-11, 18F-AlF-PSMA-11 was not stable in water (radiochemical purity was 64.5% immediately after purification and 52.7% at 120 min after purification). 18F-AlF-PSMA-11 remained relatively stable in 25 mM NH4OAc, pH 6.9, and radiochemical purity decreased from 98.5% at purification to 96.3%, 94.7%, and 92.5% at 60, 120, and 180 min after purification. In vitro, the 18F- and 68Ga-labeled compounds showed rapid internalization in LS174T-PSMA cells. The highest tumor uptake (percentage injected dose [%ID]) was observed at 2 h after injection (10.8 ± 2.3 %ID/g and 7.9 ± 1.3 %ID/g for 18F-AlF-PSMA-11 and 68Ga-PSMA-11, respectively [P > 0.05]). Renal tracer uptake peaked at 2 h after injection (43.5 ± 5.7 %ID/g and 105.8 ± 13.8 %ID/g for 18F-AlF-PSMA-11 and 68Ga-PSMA-11, respectively, P < 0.05). Bone uptake of 18F-AlF-PSMA-11 was 3.3 ± 0.6 at 1 h after injection and 5.0 ± 0.6 %ID/g at 2 h after injection and was dependent on the radiochemical purity at the time of injection. Bone uptake of 68Ga-PSMA-11 reached 0.1 ± 0.0 %ID/g at 1 and 2 h after injection. PSMA-expressing xenografts could be visualized using both 68Ga-PSMA-11- and 18F-AlF-PSMA-11 PET/CT. Conclusion: 18F-AlF-PSMA-11 using direct labeling with aluminum fluoride can be produced in NH4OAc, pH 6.9; shows a high internalization rate; and visualizes PSMA-expressing tumors with similar tumor uptake. Lower kidney uptake than with 68Ga-PSMA-11 may be advantageous for tumor detection. However, the limited instability and consequent Al18F uptake in bone might hamper the visualization of small PCa bone metastases.


Assuntos
Antígenos de Superfície/metabolismo , Radioisótopos de Flúor , Regulação Neoplásica da Expressão Gênica , Glutamato Carboxipeptidase II/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Compostos Radiofarmacêuticos/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Marcação por Isótopo , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual
19.
Mol Pharm ; 16(2): 701-708, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30550290

RESUMO

Tumor hypoxia plays a major role in radio- and chemotherapy resistance in solid tumors. Carbonic Anhydrase IX (CAIX) is an endogenous hypoxia-related protein, which is associated with poor patient outcome. The quantitative assessment of CAIX expression of tumors may steer cancer treatment by predicting therapy response or patient selection for antihypoxia or CAIX-targeted treatment. Recently, the single-photon emission computerized tomography (SPECT) tracer [111In]In-DTPA-girentuximab-F(ab')2 was developed and validated for targeting CAIX. The aim of this study was to optimize quantitative microSPECT/CT of CAIX expression in vivo in head and neck tumor models. Athymic mice with subcutaneous SCCNij153 and SCCNij202 head and neck squamous cell carcinoma xenografts were injected with [111In]In-DTPA-girentuximab-F(ab')2. First, the protein dose, timing, and image acquisition settings were optimized. Tracer uptake was determined by quantitative SPECT, ex vivo radioactivity counting, and by autoradiography of tumor sections. The same tumor sections were immunohistochemically stained for CAIX expression and hypoxia. Highest tumor-normal-tissue contrast was obtained at 24 h after injection of the tracer. A protein dose of 10 µg resulted in the highest tumor-to-muscle ratio at 24 h p.i. Ex vivo biodistribution studies showed a tumor uptake of 3.0 ± 0.6%ID/g and a tumor-to-muscle ratio of 8.7 ± 1.4 (SCCNij153). Quantitative analysis of the SPECT images enabled us to distinguish CAIX antigen blocked from nonblocked tumors, fractions positive for CAIX expression: 0.22 ± 0.02 versus 0.08 ± 0.01 ( p < 0.01). Immunohistochemical, autoradiographic, and microSPECT/CT analyses showed a distinct intratumoral spatial correlation between localization of the radiotracer and CAIX expression. Here, we demonstrate that [111In]In-DTPA-girentuximab-F(ab')2 specifically targets CAIX-expressing cells in head and neck cancer xenografts. SPECT imaging with indium-labeled girentuximab-F(ab')2 allows quantitative assessment of the fraction of CAIX positive tissue in head and neck cancer xenografts. These results indicate that [111In]In-DTPA-girentuximab-F(ab')2 is a promising tracer to image hypoxia-related CAIX expression.


Assuntos
Anidrase Carbônica IX/metabolismo , Hipóxia/diagnóstico por imagem , Hipóxia/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico por imagem , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Animais , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/uso terapêutico , Autorradiografia , Imuno-Histoquímica , Camundongos , Camundongos Nus , Nitroimidazóis/farmacocinética , Nitroimidazóis/uso terapêutico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Tomografia Computadorizada de Emissão de Fóton Único
20.
Contrast Media Mol Imaging ; 2018: 3171794, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29849512

RESUMO

Cholecystokinin-2 receptors (CCK2R) are overexpressed in a variety of malignant diseases and therefore have gained certain attention for peptide receptor radionuclide imaging. Among extensive approaches to improve pharmacokinetics and metabolic stability of minigastrin (MG) based radioligands, the concept of multivalency for enhanced tumour targeting has not been investigated extensively. We therefore utilized fusarinine C (FSC) as chelating scaffold for novel mono-, di-, and trimeric bioconjugates for targeting CCK2R expression. FSC-based imaging probes were radiolabelled with positron emitting radionuclides (gallium-68 and zirconium-89) and characterized in vitro (log⁡D, IC50, and cell uptake) and in vivo (metabolic stability in BALB/c mice, biodistribution profile, and microPET/CT imaging in A431-CCK2R/A431-mock tumour xenografted BALB/c nude mice). Improved targeting did not fully correlate with the grade of multimerization. The divalent probe showed higher receptor affinity and increased CCK2R mediated cell uptake while the trimer remained comparable to the monomer. In vivo biodistribution studies 1 h after administration of the 68Ga-labelled radioligands confirmed this trend, but imaging at late time point (24 h) with 89Zr-labelled counterparts showed a clearly enhanced imaging contrast of the trimeric probe compared to the mono- and dimer. Furthermore, in vivo stability studies showed a higher metabolic stability for multimeric probes compared to the monomeric bioconjugate. In summary, we could show that FSC can be utilized as suitable scaffold for novel mono- and multivalent imaging probes for CCK2R-related malignancies with partly improved targeting properties for multivalent conjugates. The increased tumour accumulation of the trimer 24 h postinjection (p.i.) can be explained by slower clearance and increased metabolic stability of multimeric conjugates.


Assuntos
Compostos Férricos/química , Gastrinas/química , Ácidos Hidroxâmicos/química , Radioisótopos , Cintilografia/métodos , Compostos Radiofarmacêuticos/química , Receptor de Colecistocinina B/análise , Animais , Linhagem Celular Tumoral , Quelantes/química , Estabilidade de Medicamentos , Radioisótopos de Gálio , Xenoenxertos , Humanos , Taxa de Depuração Metabólica , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Neoplasias/análise , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Zircônio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...