Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 198: 114266, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38499255

RESUMO

Design of inhalable mRNA therapeutics is promising because local administration in the respiratory tract is minimally invasive and induces a local response. However, several challenges related to administration via inhalation and respiratory tract barriers have so far prevented the progress of inhaled mRNA therapeutics. Here, we investigated factors of importance for lipid nanoparticle (LNP)-mediated delivery of mRNA to the respiratory tract. We hypothesized that: (i) the PEG-lipid content is important for providing colloidal stability during aerosolization and for mucosal delivery, (ii) the PEG-lipid contentinfluences the expression of mRNA-encoded protein in the lungs, and (iii) the route of administration (nasal versus pulmonary) affects mRNA delivery in the lungs. In this study, we aimed to optimize the PEG-lipid content for mucosal delivery and to investigatethe effect of administration route on the kinetics of protein expression. Our results show that increasing the PEG-lipid content improves the colloidal stability during the aerosolization process, but has a negative impact on the transfection efficiencyin vitro. The kinetics of protein expressionin vivois dependent on the route of administration, and we found that pulmonaryadministration of mRNA-LNPs to mice results inmore durable protein expression than nasaladministration. These results demonstrate that the design of the delivery system and the route of administration are importantfor achieving high mRNA transfection efficiency in the respiratory tract.


Assuntos
Nanopartículas , Sistema Respiratório , Animais , Camundongos , Lipossomos , RNA Mensageiro , Lipídeos
2.
J Med Chem ; 67(2): 1370-1383, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38169430

RESUMO

In view of the increased prevalence of antimicrobial resistance among human pathogens, antibiotics against multidrug-resistant (MDR) bacteria are in urgent demand. In particular, the rapidly emerging resistance to last-resort antibiotic colistin, used for severe Gram-negative MDR infections, is critical. Here, a series of polymyxins containing unnatural amino acids were explored, and some analogues exhibited excellent antibacterial activity against Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa. Hydrophobicity of the compounds within this series (as measured by retention in reversed-phase analytical HPLC) exhibited a discernible correlation with their antimicrobial activity. This trend was particularly pronounced for colistin-resistant pathogens. The most active compounds demonstrated competitive activity against a panel of Gram-negative pathogens, while exhibiting low in vitro cytotoxicity. Importantly, most of these hits also retained (or even had increased) potency against colistin-susceptible strains. These findings infer that fine-tuning hydrophobicity may enable the design of polymyxin analogues with favorable activity profiles.


Assuntos
Colistina , Polimixinas , Humanos , Polimixinas/farmacologia , Colistina/farmacologia , Polimixina B , Aminoácidos/farmacologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Escherichia coli , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana
3.
Eur J Med Chem ; 265: 116097, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38157595

RESUMO

Tridecaptins comprise a class of linear cationic lipopeptides with an N-terminal fatty acyl moiety. These 13-mer antimicrobial peptides consist of a combination of d- and l-amino acids, conferring increased proteolytic stability. Intriguingly, they are biosynthesized by non-ribosomal peptide synthetases in the same bacterial species that also produce the cyclic polymyxins displaying similar fatty acid tails. Previously, the des-acyl analog of TriA1 (termed H-TriA1) was found to possess very weak antibacterial activity, albeit it potentiated the effect of several antibiotics. In the present study, two series of des-acyl tridecaptins were explored with the aim of improving the direct antibacterial effect. At the same time, overall physico-chemical properties were modulated by amino acid substitution(s) to diminish the risk of undesired levels of hemolysis and to avoid an impairment of mammalian cell viability, since these properties are typically associated with highly hydrophobic cationic peptides. Microbiology and biophysics tools were used to determine bacterial uptake, while circular dichroism and isothermal calorimetry were used to probe the mode of action. Several analogs had improved antibacterial activity (as compared to that of H-TriA1) against Enterobacteriaceae. Optimization enabled identification of the lead compound 29 that showed a good ADMET profile as well as in vivo efficacy in a variety of mouse models of infection.


Assuntos
Antibacterianos , Bactérias , Peptídeos , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/química , Ácidos Graxos/química , Lipopeptídeos/farmacologia , Lipopeptídeos/química , Mamíferos , Testes de Sensibilidade Microbiana , Cátions/química
4.
Bioorg Chem ; 141: 106876, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37797458

RESUMO

Antimicrobial peptides (AMPs) often display guanidinium functionalities, and hence robust synthetic procedures are needed to facilitate access to analogues with unnatural homologues of arginine (Arg = R). Initially, a resin-bound Arg/Pro-rich fluoren-9-yl-methyloxycarbonyl-protected fragment (Fmoc-RPRPPR) of the AMP oncocin (i.e., VDKPPYLPRPRPPRRIYNR-NH2) was employed in a comparative on-resin assessment of commercial guanidinylation reagents head-to-head with the recently studied bis-Boc-protected triazole-based reagent, 1H-triazole-1-[N,N'-bis(tert-butoxycarbonyl)]-carboxamidine, which was synthesized by a chromatography-free procedure. This reagent was found to enable quantitative conversion in solid-phase peptide synthesis (SPPS) of peptides displaying homoarginine (Har) residues and/or an N-terminal guanidinium group. SPPS was used to obtain analogues of the 18-mer oncocin with single as well as multiple Arg → Har modifications. In addition, the effect of replacement of proline (Pro) residues in oncocin was explored by incorporating single or multiple trans-4-hydroxy-l-proline (Hyp) or 4,4-difluoro-l-proline (Dfp) residues, which both affected hydrophobicity. The resulting peptide library was tested against both Gram-negative and Gram-positive bacteria. Analysis of the minimal inhibitory concentrations (MICs) showed that analogues, displaying modifications at positions 4, 5 and 12 (originally Pro residues), had retained or slightly improved antimicrobial activity. Next, an oncocin analogue with two stabilizing l-Arg → d-Arg replacements in the C-terminal part was further modified by triple-replacement of Pro by either Dfp or Hyp in positions 4, 5, and 12. The resulting analogue displaying three Pro → Dfp modifications proved to possess the best activity profile: MICs of 1-2 µg/mL against E. coli and Klebsiella pneumoniae, less than 1% hemolysis at 800 µg/mL, and an IC50 above 1280 µg/mL in HepG2 cells. Thus, incorporation of bis-fluorinated Pro residues appears to constitute a novel tool in structure-activity studies aimed at optimization of Pro-rich AMPs.


Assuntos
Escherichia coli , Homoarginina , Hidroxiprolina/farmacologia , Homoarginina/farmacologia , Guanidina/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Antimicrobianos , Triazóis/farmacologia
5.
Mol Cell Biochem ; 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37610616

RESUMO

The ever-increasing availability of genome sequencing data has revealed a substantial number of uncharacterized genes without known functions across various organisms. The first comprehensive genome sequencing of E. coli K12 revealed that more than 50% of its open reading frames corresponded to transcripts with no known functions. The group of protein-coding genes without a functional description and/or a recognized pathway, beginning with the letter "Y", is classified as the "y-ome". Several efforts have been made to elucidate the functions of these genes and to recognize their role in biological processes. This review provides a brief update on various strategies employed when studying the y-ome, such as high-throughput experimental approaches, comparative omics, metabolic engineering, gene expression analysis, and data integration techniques. Additionally, we highlight recent advancements in functional annotation methods, including the use of machine learning, network analysis, and functional genomics approaches. Novel approaches are required to produce more precise functional annotations across the genome to reduce the number of genes with unknown functions.

6.
FEMS Microbiol Lett ; 3702023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37300868

RESUMO

Proton-dependent oligopeptide transporters (POTs) are recognized for their substrate promiscuity due to their ability to transport a wide range of substrates. POTs are conserved in all forms of life ranging from bacteria to humans. A dipeptide-fluorophore conjugate, H-(ß-Ala)-Lys(AMCA)-OH, is a well-known substrate of the transporter YdgR that is commonly used as a fluorescent reporter. In order to understand the substrate space of YdgR, we used this dipeptide as a bait reference, when screening an ensemble of compounds (previously tested in PEPT/PTR/NPF space) via a cheminformatic analysis based on the Tanimoto similarity index. Eight compounds (sinalbin, abscisic acid, carnosine, jasmonic acid, N-acetyl-aspartate, N-acetyl-lysine, aspartame, and N-acetyl-aspartylglutamate), covering a wide range on the Tanimoto scale, were tested for YdgR-mediated transport. Carnosine was the only compound observed to be a YdgR substrate based on cell-based transport assays and molecular docking. The other compounds tested were neither inhibitors nor substrates. Thus, we found that neither the Tanimoto similarity index nor ADME (absorption, distribution, metabolism, and excretion) properties appear useful for the identification of substrates (e.g., dipeptides) in YdgR-mediated drug transport.


Assuntos
Carnosina , Proteínas de Escherichia coli , Humanos , Prótons , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Carnosina/metabolismo , Simulação de Acoplamento Molecular , Quimioinformática , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico , Oligopeptídeos/metabolismo , Dipeptídeos/metabolismo
7.
Pharmaceutics ; 15(6)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37376119

RESUMO

Cell-penetrating peptides (CPPs), such as penetratin, are often investigated as drug delivery vectors and incorporating d-amino acids, rather than the natural l-forms, to enhance proteolytic stability could improve their delivery efficiency. The present study aimed to compare membrane association, cellular uptake, and delivery capacity for all-l and all-d enantiomers of penetratin (PEN) by using different cell models and cargos. The enantiomers displayed widely different distribution patterns in the examined cell models, and in Caco-2 cells, quenchable membrane binding was evident for d-PEN in addition to vesicular intracellular localization for both enantiomers. The uptake of insulin in Caco-2 cells was equally mediated by the two enantiomers, and while l-PEN did not increase the transepithelial permeation of any of the investigated cargo peptides, d-PEN increased the transepithelial delivery of vancomycin five-fold and approximately four-fold for insulin at an extracellular apical pH of 6.5. Overall, while d-PEN was associated with the plasma membrane to a larger extent and was superior in mediating the transepithelial delivery of hydrophilic peptide cargoes compared to l-PEN across Caco-2 epithelium, no enhanced delivery of the hydrophobic cyclosporin was observed, and intracellular insulin uptake was induced to a similar degree by the two enantiomers.

8.
Eur J Pharm Biopharm ; 189: 84-97, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37059402

RESUMO

The ability to induce antigen-specific CD4+ and CD8+T-cell responses is one of the fundamental requirements when developing new efficacious vaccines against challenging infectious diseases and cancer. However, no adjuvants are currently approved for human subunit vaccines that induce T-cell immunity. Here, we incorporated a Toll-like receptor 4 agonist, i.e., the ionizable lipidoid L5N12, in the liposomal cationic adjuvant formulation 09 (CAF®09), and found that modified CAF®09 liposomes possess preserved adjuvant function as compared to unmodified CAF®09. CAF®09 consists of the cationic lipid dimethyldioctadecylammonium (DDA), monomycoloyl glycerol analogue 1 (MMG-1), and polyinosinic:polycytidylic acid [poly(I:C)]. By using the microfluidic mixing technology for liposome preparation, we gradually replaced DDA with L5N12, while keeping the molar ratios of MMG-1 and poly(I:C) constant. We found that this type of modification resulted in colloidally stable liposomes, which were significantly smaller and displayed reduced surface charge as compared to unmodified CAF®09, prepared by using the conventional thin film method. We showed that incorporation of L5N12 decreases the membrane rigidity of CAF®09 liposomes. Furthermore, vaccination with antigen adjuvanted with L5N12-modified CAF®09 or antigen adjuvanted with unmodified CAF®09, respectively, induced comparable antigen-specific serum antibody titers. We found that antigen adjuvanted with L5N12-modified CAF®09 induced antigen-specific effector and memory CD4+ and CD8+T-cell responses in the spleen comparable to those induced when unmodified CAF®09 was used as adjuvant. However, incorporating L5N12 did not have a synergistic immunopotentiating effect on the antibody and T-cell responses induced by CAF®09. Moreover, vaccination with antigen adjuvanted with unmodified CAF®09, which was manufactured by using microfluidic mixing, induced significantly lower antigen-specific CD4+ and CD8+T-cell responses than vaccination with antigen adjuvanted with unmodified CAF®09, which was prepared by using the thin film method. These results show that the method of manufacturing affects CAF®09 liposome adjuvanted antigen-specific immune responses, which should be taken into consideration when evaluating immunogenicity of subunit protein vaccines.


Assuntos
Adjuvantes Imunológicos , Lipossomos , Humanos , Adjuvantes Imunológicos/farmacologia , Poli I-C , Antígenos , Adjuvantes Farmacêuticos , Vacinas de Subunidades Antigênicas , Imunidade
9.
Biochem Biophys Res Commun ; 661: 42-49, 2023 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-37087797

RESUMO

Membrane transport proteins are essential for the transport of a wide variety of molecules across the cell membrane to maintain cellular homeostasis. Generally, these transport proteins can be overexpressed in a suitable host (bacteria, yeast, or mammalian cells), and it is well documented that overexpression of membrane proteins alters the global metabolomic and proteomic profiles of the host cells. In the present study, we investigated the physiological consequences of overexpression of a membrane transport protein YdgR that belongs to the POT/PTR family from E. coli by using the lab strain BL21 (DE3)pLysS in its functional and attenuated mutant YdgR-E33Q. We found significant differences between the omics (metabolomics and proteomics) profiles of the cells expressing functional YdgR as compared to cells expressing attenuated YdgR, e.g., upregulation of several uncharacterized y-proteins and enzymes involved in the metabolism of peptides and amino acids. Furthermore, molecular network analysis suggested a relatively higher presence of proline-containing tripeptides in cells expressing functional YdgR. We envisage that an in-depth investigation of physiological alterations due to protein over-expression may be used for the deorphanization of the y-gene transportome.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Animais , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteômica , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Recombinantes/metabolismo , Mamíferos/metabolismo
10.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769243

RESUMO

In vitro determination of hemolytic properties is a common and important method for preliminary evaluation of cytotoxicity of chemicals, drugs, or any blood-contacting medical device or material. The method itself is relatively straightforward, however, protocols used in the literature vary substantially. This leads to significant difficulties both in interpreting and in comparing the obtained values. Here, we examine how the different variables used under different experimental setups may affect the outcome of this assay. We find that certain key parameters affect the hemolysis measurements in a critical manner. The hemolytic effect of compounds tested here varied up to fourfold depending on the species of the blood source. The use of different types of detergents used for generating positive control samples (i.e., 100% hemolysis) produced up to 2.7-fold differences in the calculated hemolysis ratios. Furthermore, we find an expected, but substantial, increase in the number of hemolyzed erythrocytes with increasing erythrocyte concentration and with prolonged incubation time, which in turn affects the calculated hemolysis ratios. Based on our findings we propose an optimized protocol in an attempt to standardize future hemolysis studies.


Assuntos
Eritrócitos , Hemólise , Humanos
11.
J Enzyme Inhib Med Chem ; 38(1): 2155816, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36629427

RESUMO

Natural products and analogues are a source of antibacterial drug discovery. Considering drug resistance levels emerging for antibiotics, identification of bacterial metalloenzymes and the synthesis of selective inhibitors are interesting for antibacterial agent development. Peptide nucleic acids are attractive antisense and antigene agents representing a novel strategy to target pathogens due to their unique mechanism of action. Antisense inhibition and development of antisense peptide nucleic acids is a new approach to antibacterial agents. Due to the increased resistance of biofilms to antibiotics, alternative therapeutic options are necessary. To develop antimicrobial strategies, optimised in vitro and in vivo models are needed. In vivo models to study biofilm-related respiratory infections, device-related infections: ventilator-associated pneumonia, tissue-related infections: chronic infection models based on alginate or agar beads, methods to battle biofilm-related infections are discussed. Drug delivery in case of antibacterials often is a serious issue therefore this review includes overview of drug delivery nanosystems.


Assuntos
Anti-Infecciosos , Ácidos Nucleicos Peptídicos , Bactérias , Antibacterianos/farmacologia , Biofilmes
12.
J Colloid Interface Sci ; 633: 907-922, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36508398

RESUMO

We analyzed the structural and material properties of small interfering RNA (siRNA)-loaded lipid-polymer hybrid nanoparticles (LPNs) containing ionizable lipidoid and poly(dl-lactic-co-glycolic acid) (PLGA) using small-angle X-ray scattering, cryogenic transmission electron microscopy, polarized light microscopy, the Langmuir monolayer methodology, differential scanning calorimetry, and attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy. Scattering analyses showed that bulk lipidoid self-assemble into lamellar structures with a d-spacing of 38 Å, whereas lipidoid-siRNA lipoplexes display an in-plane lateral organization of siRNA in between lipidoid bilayers with a repeat distance of approximately 55 Å. The siRNA-loaded LPNs adopted a core-shell structure with an interaxial alignment of siRNA between lipidoid shell bilayers. Langmuir monolayer experiments showed a distinct interaction between the lipidoid headgroups and siRNA, which was dependent on buffer subphase pH. Thermal analyses suggested that PLGA and lipidoid interact, which was evident from a shift in the phase transition temperature of lipidoid, and the thermotropic phase behavior of lipidoid was affected by inclusion of siRNA. ATR-FTIR data confirmed the shift or disappearance of characteristic absorption bands of siRNA after lipidoid binding. In conclusion, siRNA-loaded LPNs display a core-shell structure, wherein the polymeric core functions as a colloid matrix support for siRNA-loaded lipidoid shell layers.


Assuntos
Nanopartículas , Polímeros , RNA Interferente Pequeno/química , Polímeros/química , Nanopartículas/química , Ácido Láctico/química
13.
J Colloid Interface Sci ; 633: 511-525, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36463820

RESUMO

Pulmonary delivery of small interfering RNA (siRNA) using nanoparticle-based delivery systems is promising for local treatment of respiratory diseases. We designed dry powder inhaler formulations of siRNA-loaded lipid-polymer hybrid nanoparticles (LPNs) with aerosolization properties optimized for inhalation therapy. Interactions between LPNs and pulmonary surfactant (PS) determine the fate of inhaled LPNs, but interaction mechanisms are unknown. Here we used surface-sensitive techniques to study how physicochemical properties and pathological microenvironments influence interactions between siRNA-loaded LPNs and supported PS layers. PS was deposited on SiO2 surfaces as single bilayer or multilayers and characterized using quartz crystal microbalance with dissipation monitoring and Fourier-transform infrared spectroscopy with attenuated total reflection. Immobilization of PS as multilayers, resembling the structural PS organization in the alveolar subphase, effectively reduced the relative importance of interactions between PS and the underlying surface. However, the binding affinity between PS and LPNs was identical in the two models. The physicochemical LPN properties influenced the translocation pathways and retention time of LPNs. Membrane fluidity and electrostatic interactions were decisive for the interaction strength between LPNs and PS. Experimental conditions reflecting pathological microenvironments promoted LPN deposition. Hence, these results shed new light on design criteria for LPN transport through the air-blood barrier.


Assuntos
Nanopartículas , Surfactantes Pulmonares , Polímeros/química , Dióxido de Silício , RNA Interferente Pequeno/química , Nanopartículas/química , Lipídeos/química
14.
Future Med Chem ; 14(24): 1899-1921, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36421051

RESUMO

Aims: This systematic review was carried out to determine whether synthetic peptidomimetics exhibit significant advantages over antimicrobial peptides in terms of in vitro potency. Structural features - molecular weight, charge and length - were examined for correlations with activity. Methods: Original research articles reporting minimum inhibitory concentration  values against Escherichia coli, indexed until 31 December 2020, were searched in PubMed/ScienceDirect/Google Scholar and evaluated using mixed-effects models. Results: In vitro antimicrobial activity of peptidomimetics resembled that of antimicrobial peptides. Net charge significantly affected minimum inhibitory concentration values (p < 0.001) with a trend of 4.6% decrease for increments in charge by +1. Conclusion: AMPs and antibacterial peptidomimetics exhibit similar potencies, providing an opportunity to exploit the advantageous stability and bioavailability typically associated with peptidomimetics.


Assuntos
Antibacterianos , Peptídeos Antimicrobianos , Peptidomiméticos , Antibacterianos/farmacologia , Antibacterianos/química , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Escherichia coli , Testes de Sensibilidade Microbiana , Peptidomiméticos/farmacologia , Peptidomiméticos/química
15.
Int J Pharm ; 626: 122171, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36070841

RESUMO

Robust, sensitive, and versatile analytical methods are essential for quantification of RNA drug cargos loaded into nanoparticle-based delivery systems. However, simultaneous quantification of multiple RNA cargos co-loaded into nanoparticles remains a challenge. Here, we developed and validated the use of ion-pair reversed-phase high-performance liquid chromatography combined with UV detection (IP-RP-HPLC-UV) for simultaneous quantification of single- and double-stranded RNA cargos. Complete extraction of RNA cargo from the nanoparticle carrier was achieved using a phenol:chloroform:isoamyl alcohol mixture. Separations were performed using either a C18 or a PLRP-S column, eluted with 0.1 M triethylammonium acetate (TEAA) solution as ion-pairing reagent (eluent A), and 0.1 M TEAA containing 25 % (v/v) CH3CN as eluent B. These methods were applied to quantify mRNA and polyinosinic:polycytidylic acid co-loaded into lipid-polymer hybrid nanoparticles, and single-stranded oligodeoxynucleotide donors and Alt-R CRISPR single guide RNAs co-loaded into lipid nanoparticles. The developed methods were sensitive (limit of RNA quantification < 60 ng), linear (R2 > 0.997), and accurate (≈ 100 % recovery of RNA spiked in nanoparticles). Hence, the present study may facilitate convenient quantification of multiple RNA cargos co-loaded into nanoparticle-based delivery systems.


Assuntos
Nanopartículas , RNA de Cadeia Dupla , Clorofórmio , Cromatografia Líquida de Alta Pressão/métodos , Lipídeos , Lipossomos/análise , Nanopartículas/química , Oligodesoxirribonucleotídeos , Fenóis/análise , Poli C , Polímeros/análise , RNA Mensageiro
16.
mSphere ; 7(5): e0040222, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36154672

RESUMO

Escherichia coli is intrinsically resistant to macrolides due to outer membrane impermeability, but may also acquire macrolide resistance genes by horizontal transfer. We evaluated the prevalence and types of acquired macrolide resistance determinants in pig clinical E. coli, and we assessed the ability of peptidomimetics to potentiate different macrolide subclasses against strains resistant to neomycin, a first-line antibiotic in the treatment of pig-enteric infections. The erythromycin MIC distribution was determined in 324 pig clinical E. coli isolates, and 62 neomycin-resistant isolates were further characterized by genome sequencing and MIC testing of azithromycin, spiramycin, tilmicosin, and tylosin. The impact on potency achieved by combining these macrolides with three selected peptidomimetic compounds was determined by checkerboard assays in six strains representing different genetic lineages and macrolide resistance gene profiles. Erythromycin MICs ranged from 16 to >1,024 µg/mL. Azithromycin showed the highest potency in wild-type strains (1 to 8 µg/mL), followed by erythromycin (16 to 128 µg/mL), tilmicosin (32 to 256 µg/mL), and spiramycin (128 to 256 µg/mL). Isolates with elevated MIC mainly carried erm(B), either alone or in combination with other acquired macrolide resistance genes, including erm(42), mef(C), mph(A), mph(B), and mph(G). All peptidomimetic-macrolide combinations exhibited synergy (fractional inhibitory concentration index [FICI] < 0.5) with a 4- to 32-fold decrease in the MICs of macrolides. Interestingly, the MICs of tilmicosin in wild-type strains were reduced to concentrations (4 to 16 µg/mL) that can be achieved in the pig intestinal tract after oral administration, indicating that peptidomimetics can potentially be employed for repurposing tilmicosin in the management of E. coli enteritis in pigs. IMPORTANCE Acquired macrolide resistance is poorly studied in Escherichia coli because of intrinsic resistance and limited antimicrobial activity in Gram-negative bacteria. This study reveals new information on the prevalence and distribution of macrolide resistance determinants in a comprehensive collection of porcine clinical E. coli from Denmark. Our results contribute to understanding the correlation between genotypic and phenotypic macrolide resistance in E. coli. From a clinical standpoint, our study provides an initial proof of concept that peptidomimetics can resensitize E. coli to macrolide concentrations that may be achieved in the pig intestinal tract after oral administration. The latter result has implications for animal health and potential applications in veterinary antimicrobial drug development in view of the high rates of antimicrobial-resistant E. coli isolated from enteric infections in pigs and the lack of viable alternatives for treating these infections.


Assuntos
Infecções por Escherichia coli , Peptidomiméticos , Espiramicina , Suínos , Animais , Escherichia coli/genética , Antibacterianos/farmacologia , Azitromicina/farmacologia , Peptidomiméticos/farmacologia , Macrolídeos/farmacologia , Tilosina/farmacologia , Farmacorresistência Bacteriana/genética , Eritromicina/farmacologia , Infecções por Escherichia coli/veterinária , Neomicina
17.
Antibiotics (Basel) ; 11(8)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36009951

RESUMO

BP214 is an all-D antimicrobial peptide amide, kklfkkilryl, which shows an excellent activity against colistin-resistant Acinetobacter baumannii and a low hemolytic activity. The aim of the present work was to investigate how C-terminus-to-side chain macrocyclization and fatty acid modification affect the antimicrobial and hemolytic activity of this peptide. In total, 18 analogs of BP214 were synthesized using a combination of Fmoc-based solid-phase peptide synthesis and the submonomer approach. Cyclization was achieved by reacting the ε-amino group of a C-terminal lysine residue with a bromoacetylgroup attached to the Nα amino group of the N-terminal amino acid, generating a secondary amine at which the exocyclic lipopeptide tail was assembled. Three different ring sizes (i.e., 3-5 amino acid residues) of C-locked analogs combined with fatty acids of different lengths (i.e., C10-C14) were investigated. The antimicrobial activity of the analogs was tested against Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa. The most promising compound was analog 13 (MIC = 4 µg/mL (2.4 µM) against E. coli and 36% hemolysis of red blood cells at 150 µM). In a time-kill assay, this peptide showed a significant, concentration-dependent reduction in viable E. coli cells comparable to that seen for colistin.

18.
Int J Pharm ; 621: 121758, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35483619

RESUMO

Thermostable dry powder inhaler (DPI) formulations with high aerosol performance are attractive inhalable solid dosage forms for local treatment of inflammatory lung diseases. We recently demonstrated that lipidoid-polymer hybrid nanoparticles (LPNs) loaded with small interfering RNA (siRNA) directed against tumor necrosis factor alpha (TNF-α) mediate efficient intracellular siRNA delivery and reduce inflammation in vivo. Here, we show that mixtures of the stabilizing excipients trehalose (Tre) and dextran (Dex), in combination with the shell-forming dispersion enhancer leucine (Leu), stabilize TNF-α siRNA-loaded LPNs during spray drying into nanocomposite microparticles, and result in DPI formulations with high aerosol performance. At low Leu content (0 to 10%, w/w), the DPI formulations were amorphous, and exhibited poor aerosol performance. When the Leu content was increased from 20 to 60% (w/w), the surface content of Leu increased from 39.2 to 68.1 mol%, and the flowability was significantly improved. Microscopy analysis suggest that the improved powder dispersibility is the result of a wrinkled surface morphology, which reduces the surface area available for interparticle interactions. Increasing the Leu content further (to above 10%, w/w) did not influence the aerosol performance, and the aerosol yield was maximal at 30-40% Leu (w/w). Formulations containing 40% Leu and a Tre:Dex ratio of 10:90 (w/w) displayed a high fine particle fraction and aerosol properties suitable for inhalation. The chemical integrity of TNF-α siRNA was preserved in the solid state, and biodistribution studies in mice showed that pulmonary administration of DPI formulations with high aerosol performance resulted in homogenous deep lung deposition. Our results demonstrate that at optimal ratios, ternary excipient mixtures of Leu, Tre and Dex protect TNF-α siRNA-loaded LPNs during spray drying. Hence, this study shows that microparticles with an amorphous Tre/Dex matrix and a crystalline Leu shell efficiently stabilize the nanocomposite LPNs in the solid state, and ensure aerosol properties suitable for inhalation.


Assuntos
Inaladores de Pó Seco , Nanopartículas , Administração por Inalação , Aerossóis , Animais , Excipientes/química , Leucina/química , Camundongos , Nanopartículas/química , Tamanho da Partícula , Pós , RNA Interferente Pequeno , Distribuição Tecidual , Trealose , Fator de Necrose Tumoral alfa
19.
J Immunol ; 208(7): 1632-1641, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35321878

RESUMO

Highly pathogenic Staphylococcus aureus strains produce phenol-soluble modulins (PSMs), which are N-formylated peptides. Nanomolar concentrations of PSMα2 are recognized by formyl peptide receptor 2 (FPR2), but unlike the prototypic FPR2 agonist WKYMVM, PSMα2 is a biased signaling agonist. The truncated N-terminal PSMα2 variant, consisting of the five N-terminal residues, is no longer recognized by FPR2, showing that the C-terminal part of PSMα2 confers FPR2 selectivity, whereas the N-terminal part may interact with the FPR1 binding site. In the current study, a combined pharmacological and genetic approach involving primary human neutrophils and engineered FPR knock-in and knockout cells was used to gain molecular insights into FPR1 and FPR2 recognition of formyl peptides as well as the receptor downstream signaling induced by these peptides. In comparison with the full-length PSMα2, we show that the peptide in which the N-terminal part of PSMα2 was replaced by fMet-Ile-Phe-Leu (an FPR1-selective peptide agonist) potently activates both FPRs for production of superoxide anions and ß-arrestin recruitment. A shortened analog of PSMα2 (PSMα21-12), lacking the nine C-terminal residues, activated both FPR1 and FPR2 to produce reactive oxygen species, whereas ß-arrestin recruitment was only mediated through FPR1. However, a single amino acid replacement (Gly-2 to Ile-2) in PSMα21-12 was sufficient to alter FPR2 signaling to include ß-arrestin recruitment, highlighting a key role of Gly-2 in conferring FPR2-biased signaling. In conclusion, we provide structural insights into FPR1 and FPR2 recognition as well as the signaling induced by interaction with formyl peptides derived from PSMα2, originating from S. aureus bacteria.


Assuntos
Receptores de Formil Peptídeo , Staphylococcus aureus , Toxinas Bacterianas , Humanos , Neutrófilos/metabolismo , Peptídeos/metabolismo , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/química , Staphylococcus aureus/metabolismo
20.
Eur J Pharm Sci ; 168: 106054, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34728364

RESUMO

The blood-brain barrier (BBB) allows passive permeation of only a limited number of, primarily lipophilic, low-molecular weight drugs that obey the so-called "rule of CNS likeness". Therefore, novel strategies to facilitate drug delivery across the BBB are needed. Cell-penetrating peptides (CPPs) enable delivery of various therapeutic cargoes into cells and may potentially serve as shuttles for delivery of brain-specific drugs across the BBB. The CPPs Tat47-57 and penetratin are prototypical cationic CPPs, whereas apidaecin and oncocin belong to the group of proline-rich cationic antimicrobial peptides displaying CPP-like properties. The aim of the present study was to investigate the potential of Tat47-57, penetratin, apidaecin, and oncocin for interaction with and permeation of the BBB in vitro. We also studied whether the CPPs facilitated permeation of the paracellular flux marker mannitol as well as the transcellular flux marker propranolol. The peptides were labelled with the fluorophore 6-TAMRA (T) for visualization and quantification purposes. CPP membrane-adherence, membrane-embedding, and cellular uptake as well as barrier-permeation were evaluated in murine brain capillary endothelial cells (bEND3) and human induced pluripotent stem cell-derived (Bioni-010c) brain capillary endothelial-like monolayers. The cationic and the proline-rich cationic CPPs were taken up into the Bioni-010c monolayers. T-Tat47-57, T-apidaecin, and T-oncocin also permeated Bioni-010c monolayers, whereas T-penetratin did not. However, both T-Tat47-57 and T-penetratin affected the barrier integrity to a degree that facilitated permeation of 14C-mannitol. These results may therefore pave the way for future CPP-mediated brain delivery of small drugs that do not obey the "rule of CNS likeness".


Assuntos
Peptídeos Penetradores de Células , Células-Tronco Pluripotentes Induzidas , Animais , Peptídeos Antimicrobianos , Barreira Hematoencefálica , Células Endoteliais , Humanos , Manitol , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...