Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hered ; 115(2): 203-211, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092381

RESUMO

Townsend's big-eared bat, Corynorhinus townsendii, is a cave- and mine-roosting species found largely in western North America. Considered a species of conservation concern throughout much of its range, protection efforts would greatly benefit from understanding patterns of population structure, genetic diversity, and local adaptation. To facilitate such research, we present the first de novo genome assembly of C. townsendii as part of the California Conservation Genomics Project (CCGP). Pacific Biosciences HiFi long reads and Omni-C chromatin-proximity sequencing technologies were used to produce a de novo genome assembly, consistent with the standard CCGP reference genome protocol. This assembly comprises 391 scaffolds spanning 2.1 Gb, represented by a scaffold N50 of 174.6 Mb, a contig N50 of 23.4 Mb, and a benchmarking universal single-copy ortholog (BUSCO) completeness score of 96.6%. This high-quality genome will be a key tool for informed conservation and management of this vulnerable species in California and across its range.


Assuntos
Quirópteros , Animais , Quirópteros/genética , Genoma , Genômica/métodos , América do Norte
2.
J Hered ; 115(1): 139-148, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-37712349

RESUMO

The Yuma myotis bat (Myotis yumanensis) is a small vespertilionid bat and one of 52 species of new world Myotis bats in the subgenus Pizonyx. While M. yumanensis populations currently appear relatively stable, it is one of 12 bat species known or suspected to be susceptible to white-nose syndrome, the fungal disease causing declines in bat populations across North America. Only two of these 12 species have genome resources available, which limits the ability of resource managers to use genomic techniques to track the responses of bat populations to white-nose syndrome generally. Here we present the first de novo genome assembly for Yuma myotis, generated as a part of the California Conservation Genomics Project. The M. yumanensis genome was generated using a combination of PacBio HiFi long reads and Omni-C chromatin-proximity sequencing technology. This high-quality genome is one of the most complete bat assemblies available, with a contig N50 of 28.03 Mb, scaffold N50 of 99.14 Mb, and BUSCO completeness score of 93.7%. The Yuma myotis genome provides a high-quality resource that will aid in comparative genomic and evolutionary studies, as well as inform conservation management related to white-nose syndrome.


Assuntos
Quirópteros , Animais , Quirópteros/genética , América do Norte , Genoma , Genômica , Evolução Biológica
3.
Mol Ecol ; 30(24): 6517-6530, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34516689

RESUMO

Emerging infectious diseases are significant threats to wildlife conservation, yet the impacts of pathogen exposure and infection can vary widely among host species. As such, conservation biologists and disease ecologists have increasingly aimed to understand species-specific host susceptibility using molecular methods. In particular, comparative gene expression assays have been used to contrast the transcriptomic responses of disease-resistant and disease-susceptible hosts to pathogen exposure. This work usually assumes that the gene expression responses of disease-resistant species will reveal the activation of molecular pathways contributing to host defence. However, results often show that disease-resistant hosts undergo little gene expression change following pathogen challenge. Here, we discuss the mechanistic implications of these "null" findings and offer methodological suggestions for future molecular studies of wildlife disease. First, we highlight that muted transcriptomic responses with minimal immune system recruitment may indeed be protective for nonsusceptible hosts if they limit immunopathology and promote pathogen tolerance in systems where susceptible hosts suffer from genetic dysregulation. Second, we argue that overly narrow investigation of responses to pathogen exposure may overlook important, constitutively active molecular pathways that underlie species-specific defences. Finally, we outline alternative study designs and approaches that complement interspecific transcriptomic comparisons, including intraspecific gene expression studies and genomic methods to detect signatures of selection. Collectively, these insights will help ecologists extract maximal information from conservation-relevant transcriptomic data sets, leading to a deeper understanding of host defences and, ultimately, the implementation of successful conservation interventions.


Assuntos
Animais Selvagens , Especificidade de Hospedeiro , Animais , Animais Selvagens/genética , Suscetibilidade a Doenças , Genômica , Interações Hospedeiro-Patógeno/genética , Transcriptoma
4.
Genes (Basel) ; 11(2)2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085502

RESUMO

Although oceans provide critical ecosystem services and support the most abundant populations on earth, the extent of damage impacting oceans and the diversity of strategies to protect them is disconcertingly, and disproportionately, understudied. While conventional modes of conservation have made strides in mitigating impacts of human activities on ocean ecosystems, those strategies alone cannot completely stem the tide of mounting threats. Biotechnology and genomic research should be harnessed and developed within conservation frameworks to foster the persistence of viable ocean ecosystems. This document distills the results of a targeted survey, the Ocean Genomics Horizon Scan, which assessed opportunities to bring novel genetic rescue tools to marine conservation. From this Horizon Scan, we have identified how novel approaches from synthetic biology and genomics can alleviate major marine threats. While ethical frameworks for biotechnological interventions are necessary for effective and responsible practice, here we primarily assessed technological and social factors directly affecting technical development and deployment of biotechnology interventions for marine conservation. Genetic insight can greatly enhance established conservation methods, but the severity of many threats may demand genomic intervention. While intervention is controversial, for many marine areas the cost of inaction is too high to allow controversy to be a barrier to conserving viable ecosystems. Here, we offer a set of recommendations for engagement and program development to deploy genetic rescue safely and responsibly.


Assuntos
Organismos Aquáticos/genética , Conservação dos Recursos Naturais/métodos , Biodiversidade , Biotecnologia , Biologia Marinha , Oceanos e Mares
5.
Mol Ecol ; 27(5): 1170-1187, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29427407

RESUMO

Anticoagulant rodenticides (ARs) are indiscriminate toxicants that threaten nontarget predatory and scavenger species through secondary poisoning. Accumulating evidence suggests that AR exposure may have disruptive sublethal consequences on individuals that can affect fitness. We evaluated AR-related effects on genome-wide expression patterns in a population of bobcats in southern California. We identify differential expression of genes involved in xenobiotic metabolism, endoplasmic reticulum stress response, epithelial integrity and both adaptive and innate immune function. Further, we find that differential expression of immune-related genes may be attributable to AR-related effects on leucocyte differentiation. Collectively, our results provide an unprecedented understanding of the sublethal effects of AR exposure on a wild carnivore. These findings highlight potential detrimental effects of ARs on a wide variety of species worldwide that may consume poisoned rodents and indicate the need to investigate gene expression effects of other toxicants added to natural environments by humans.


Assuntos
Anticoagulantes/toxicidade , Exposição Ambiental , Poluentes Ambientais/toxicidade , Genoma/efeitos dos fármacos , Lynx/genética , Rodenticidas/toxicidade , Xenobióticos/toxicidade , Imunidade Adaptativa/efeitos dos fármacos , Animais , California , Suscetibilidade a Doenças/induzido quimicamente , Estresse do Retículo Endoplasmático , Cadeia Alimentar , Perfilação da Expressão Gênica , Imunidade Inata/efeitos dos fármacos , Lynx/metabolismo , Análise de Componente Principal , Xenobióticos/metabolismo
6.
PLoS One ; 11(11): e0165765, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27802314

RESUMO

This study was conceived to detect skin mites in social mammals through real-time qPCR, and to estimate taxonomic Demodex and further Prostigmata mite relationships in different host species by comparing sequences from two genes: mitochondrial 16S rRNA and nuclear 18S rRNA. We determined the mite prevalence in the hair follicles of marmots (13%) and bats (17%). The high prevalence found in marmots and bats by sampling only one site on the body may indicate that mites are common inhabitants of their skin. Since we found three different mites (Neuchelacheles sp, Myobia sp and Penthaleus sp) in three bat species (Miotis yumanensis, Miotis californicus and Corynorhinus townsendii) and two different mites (both inferred to be members of the Prostigmata order) in one marmot species (Marmota flaviventris), we tentatively concluded that these skin mites 1) cannot be assigned to the same genus based only on a common host, and 2) seem to evolve according to the specific habitat and/or specific hair and sebaceous gland of the mammalian host. Moreover, two M. yumanensis bats harbored identical Neuchelacheles mites, indicating the possibility of interspecific cross-infection within a colony. However, some skin mites species are less restricted by host species than previously thought. Specifically, Demodex canis seems to be more transmissible across species than other skin mites. D. canis have been found mostly in dogs but also in cats and captive bats. In addition, we report the first case of D. canis infestation in a domestic ferret (Mustela putorius). All these mammalian hosts are related to human activities, and D. canis evolution may be a consequence of this relationship. The monophyletic Demodex clade showing closely related dog and human Demodex sequences also supports this likely hypothesis.


Assuntos
Animais Selvagens/parasitologia , Ácaros/classificação , Ácaros/fisiologia , Filogenia , Pele/parasitologia , Animais , Núcleo Celular/genética , Cães , Variação Genética , Humanos , Ácaros/genética , Mitocôndrias/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...