Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(35): e2304261, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37916896

RESUMO

Organic semiconductors are a promising material candidate for X-ray detection. However, the low atomic number (Z) of organic semiconductors leads to poor X-ray absorption thus restricting their performance. Herein, the authors propose a new strategy for achieving high-sensitivity performance for X-ray detectors based on organic semiconductors modified with high -Z heteroatoms. X-ray detectors are fabricated with p-type organic semiconductors containing selenium heteroatoms (poly(3-hexyl)selenophene (P3HSe)) in blends with an n-type fullerene derivative ([6,6]-Phenyl C71 butyric acid methyl ester (PC70 BM). When characterized under 70, 100, 150, and 220 kVp X-ray radiation, these heteroatom-containing detectors displayed a superior performance in terms of sensitivity up to 600 ± 11 nC Gy-1  cm-2 with respect to the bismuth oxide (Bi2 O3 ) nanoparticle (NP) sensitized organic detectors. Despite the lower Z of selenium compared to the NPs typically used, the authors identify a more efficient generation of electron-hole pairs, better charge transfer, and charge transport characteristics in heteroatom-incorporated detectors that result in this breakthrough detector performance. The authors also demonstrate flexible X-ray detectors that can be curved to a radius as low as 2 mm with low deviation in X-ray response under 100 repeated bending cycles while maintaining an industry-standard ultra-low dark current of 0.03 ± 0.01 pA mm-2 .

2.
Adv Sci (Weinh) ; : e2204815, 2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36437046

RESUMO

This study reports on a novel, flexible, proton beam detector based on mixed 3D-2D perovskite films deposited by solution onto thin plastic foils. The 3D-2D mixture allows to obtain micrometer-thick and highly uniform films that constitute the detector's active layer. The devices demonstrate excellent flexibility with stable electric transport properties down to a bending radius of 3.1 mm. The detector is characterized under a 5 MeV proton beam with fluxes in the range [4.5 × 105 - 1.4 × 109 ] H+ cm-2 s-1 , exhibiting a stable response to repetitive irradiation cycles with sensitivity up to (290 ± 40) nC Gy-1 mm-3 and a limit of detection down to (72±2) µGy s-1 . The detector radiation tolerance is also assessed up to a total of 1.7 × 1012 protons impinging on the beam spot area, with a maximum variation of the detector's response of 14%.

3.
Adv Sci (Weinh) ; 9(2): e2101746, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34755497

RESUMO

Curved X-ray detectors have the potential to revolutionize diverse sectors due to benefits such as reduced image distortion and vignetting compared to their planar counterparts. While the use of inorganic semiconductors for curved detectors are restricted by their brittle nature, organic-inorganic hybrid semiconductors which incorporated bismuth oxide nanoparticles in an organic bulk heterojunction consisting of poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl C71 butyric acid methyl ester (PC70 BM) are considered to be more promising in this regard. However, the influence of the P3HT molecular weight on the mechanical stability of curved, thick X-ray detectors remains less well understood. Herein, high P3HT molecular weights (>40 kDa) are identified to allow increased intermolecular bonding and chain entanglements, resulting in X-ray detectors that can be curved to a radius as low as 1.3 mm with low deviation in X-ray response under 100 repeated bending cycles while maintaining an industry-standard dark current of <1 pA mm-2 and a sensitivity of ≈ 0.17 µC Gy-1 cm-2 . This study identifies a crucial missing link in the development of curved detectors, namely the importance of the molecular weight of the polymer semiconductors used.

4.
Sci Adv ; 7(16)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33863730

RESUMO

The direct detection of 5-MeV protons by flexible organic detectors based on thin films is here demonstrated. The organic devices act as a solid-state detector, in which the energy released by the protons within the active layer of the sensor is converted into an electrical current. These sensors can quantitatively and reliably measure the dose of protons impinging on the sensor both in real time and in integration mode. This study shows how to detect and exploit the energy absorbed both by the organic semiconducting layer and by the plastic substrate, allowing to extrapolate information on the present and past irradiation of the detector. The measured sensitivity, S = (5.15 ± 0.13) pC Gy-1, and limit of detection, LOD = (30 ± 6) cGy s-1, of the here proposed detectors assess their efficacy and their potential as proton dosimeters in several fields of application, such as in medical proton therapy.

5.
Nat Commun ; 11(1): 2136, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358502

RESUMO

Organic semiconductor materials exhibit a great potential for the realization of large-area solution-processed devices able to directly detect high-energy radiation. However, only few works investigated on the mechanism of ionizing radiation detection in this class of materials, so far. In this work we investigate the physical processes behind X-ray photoconversion employing bis-(triisopropylsilylethynyl)-pentacene thin-films deposited by bar-assisted meniscus shearing. The thin film coating speed and the use of bis-(triisopropylsilylethynyl)-pentacene:polystyrene blends are explored as tools to control and enhance the detection capability of the devices, by tuning the thin-film morphology and the carrier mobility. The so-obtained detectors reach a record sensitivity of 1.3 · 104 µC/Gy·cm2, the highest value reported for organic-based direct X-ray detectors and a very low minimum detectable dose rate of 35 µGy/s. Thus, the employment of organic large-area direct detectors for X-ray radiation in real-life applications can be foreseen.

6.
Sci Adv ; 4(6): eaat1825, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29963634

RESUMO

Distributed x-ray radiation dosimetry is crucial in diverse security areas with significant environmental and human impacts such as nuclear waste management, radiotherapy, or radioprotection devices. We present a fast, real-time dosimetry detection system based on flexible oxide thin-film transistors that show a quantitative shift in threshold voltage of up to 3.4 V/gray upon exposure to ionizing radiation. The transistors use indium-gallium-zinc-oxide as a semiconductor and a multilayer dielectric based on silicon oxide and tantalum oxide. Our measurements demonstrate that the threshold voltage shift is caused by the accumulation of positive ionization charge in the dielectric layer due to high-energy photon absorption in the high-Z dielectric. The high mobility combined with a steep subthreshold slope of the transistor allows for fast, reliable, and ultralow-power readout of the deposited radiation dose. The order-of-magnitude variation in transistor channel impedance upon exposure to radiation makes it possible to use a low-cost, passive radiofrequency identification sensor tag for its readout. In this way, we demonstrate a passive, programmable, wireless sensor that reports in real time the excess of critical radiation doses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...