Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 9(3)2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32192189

RESUMO

Consumer demands for plant-based products have increased in recent years. However, their consumption is still limited due to the presence of off-flavor compounds, primarily beany and green notes, which are mainly associated with the presence of aldehydes, ketones, furans, and alcohols. To overcome this problem, fermentation is used as a lever to reduce off-flavors. A starter culture of lactic acid bacteria (LAB) was tested in a 4% pea protein solution with one of the following yeasts: Kluyveromyces lactis, Kluyveromyces marxianus, or Torulaspora delbrueckii. The fermented samples were evaluated by a sensory panel. Non-fermented and fermented matrices were analyzed by gas chromatography coupled with mass spectrometry to identify and quantify the volatile compounds. The sensory evaluation showed a significant reduction in the green/leguminous attributes of pea proteins and the generation of new descriptors in the presence of yeasts. Compared to the non-fermented matrix, fermentations with LAB or LAB and yeasts led to the degradation of many off-flavor compounds. Moreover, the presence of yeasts triggered the generation of esters. Thus, fermentation by a co-culture of LAB and yeasts can be used as a powerful tool for the improvement of the sensory perception of a pea protein-based product.

2.
Food Res Int ; 125: 108643, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31554056

RESUMO

Sodium reduction in the human diet is currently one of the main concerns for public health agencies and, consequently, has become a challenge for the food industries. In this study, the impact of reduced sodium chloride content (20%) or its partial substitution with potassium chloride in soft ("Camembert"-type) and semi-hard ("Reblochon"-type) cheeses was evaluated. Analyses included physicochemical and biochemical composition, microbial counts, 16S rRNA gene metabarcoding and metatranscriptomic analysis, volatile aroma compounds and sensory analysis. Regarding soft cheeses, the salt content of cheeses affected proteolysis at 21 days of ripening. RNA sequencing revealed that the relative activity of G. candidum increased, whereas that of P. camemberti decreased in reduced salt cheeses in comparison to the controls. Higher global intensity of odor and taste was observed in cheeses with reduced salt content, consistent with higher levels of alcohol and ester components. Regarding semi-hard cheeses, modifications of salt content did not significantly affect either their biochemical parameters and sensory characteristics or their technological microbial composition at day 21 of ripening. Finally, no impact of salt content was observed on the growth of the spoiler Yarrowia lipolytica in soft cheeses. In contrast, reducing salt content increased spoiler growth in semi-hard cheeses, as highlighted by a greater development of Pseudomonas that led to an increase in cheese proteolysis and lipolysis. In conclusion, the effect of reducing salt content is highly dependent on the cheese type. This factor should thus be taken into account by the dairy industry when the reduction of salt content is being considered. Moreover, the quality of raw products, in particular, the level of spoiler microorganisms, must be controlled before use during dairy processes.


Assuntos
Queijo/análise , Queijo/microbiologia , Cloreto de Potássio/análise , Cloreto de Sódio/análise , Carga Bacteriana , Fenômenos Químicos , Dieta Hipossódica , Humanos , Lipólise , Proteólise , Pseudomonas/crescimento & desenvolvimento , Sensação , Compostos Orgânicos Voláteis/análise , Yarrowia/crescimento & desenvolvimento
3.
Front Microbiol ; 7: 536, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27148224

RESUMO

The microbial communities in cheeses are composed of varying bacteria, yeasts, and molds, which contribute to the development of their typical sensory properties. In situ studies are needed to better understand their growth and activity during cheese ripening. Our objective was to investigate the activity of the microorganisms used for manufacturing a surface-ripened cheese by means of metatranscriptomic analysis. The cheeses were produced using two lactic acid bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus), one ripening bacterium (Brevibacterium aurantiacum), and two yeasts (Debaryomyces hansenii and Geotrichum candidum). RNA was extracted from the cheese rinds and, after depletion of most ribosomal RNA, sequencing was performed using a short-read sequencing technology that generated ~75 million reads per sample. Except for B. aurantiacum, which failed to grow in the cheeses, a large number of CDS reads were generated for the inoculated species, making it possible to investigate their individual transcriptome over time. From day 5 to 35, G. candidum accounted for the largest proportion of CDS reads, suggesting that this species was the most active. Only minor changes occurred in the transcriptomes of the lactic acid bacteria. For the two yeasts, we compared the expression of genes involved in the catabolism of lactose, galactose, lactate, amino acids, and free fatty acids. During ripening, genes involved in ammonia assimilation and galactose catabolism were down-regulated in the two species. Genes involved in amino acid catabolism were up-regulated in G. candidum from day 14 to day 35, whereas in D. hansenii, they were up-regulated mainly at day 35, suggesting that this species catabolized the cheese amino acids later. In addition, after 35 days of ripening, there was a down-regulation of genes involved in the electron transport chain, suggesting a lower cellular activity. The present study has exemplified how metatranscriptomic analyses provide insight into the activity of cheese microbial communities for which reference genome sequences are available. In the future, such studies will be facilitated by the progress in DNA sequencing technologies and by the greater availability of the genome sequences of cheese microorganisms.

4.
PLoS One ; 10(4): e0124360, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25867897

RESUMO

Cheese ripening is a complex biochemical process driven by microbial communities composed of both eukaryotes and prokaryotes. Surface-ripened cheeses are widely consumed all over the world and are appreciated for their characteristic flavor. Microbial community composition has been studied for a long time on surface-ripened cheeses, but only limited knowledge has been acquired about its in situ metabolic activities. We applied metagenomic, metatranscriptomic and biochemical analyses to an experimental surface-ripened cheese composed of nine microbial species during four weeks of ripening. By combining all of the data, we were able to obtain an overview of the cheese maturation process and to better understand the metabolic activities of the different community members and their possible interactions. Furthermore, differential expression analysis was used to select a set of biomarker genes, providing a valuable tool that can be used to monitor the cheese-making process.


Assuntos
Queijo , Microbiota , Metagenômica , Transcriptoma
5.
Int J Food Microbiol ; 194: 54-61, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25461609

RESUMO

Cheese ripening involves the activity of various bacteria, yeasts or molds, which contribute to the development of the typical color, flavor and texture of the final product. In situ measurements of gene expression are increasingly being used to improve our understanding of the microbial flora activity in cheeses. The objective of the present study was to investigate the physiology and metabolic activity of Geotrichum candidum during the ripening of Reblochon-type cheeses by quantifying mRNA transcripts at various ripening times. The expression of 80 genes involved in various functions could be quantified with a correct level of biological repeatability using a set of three stable reference genes. As ripening progresses, a decrease in expression was observed for genes involved in cell wall organization, translation, vesicular mediated transport, and in cytoskeleton constituents and ribosomal protein genes. There was also a decrease in the expression of mitochondrial F1F0 ATP synthase and plasma membrane H(+) ATPase genes. Some genes involved in the catabolism of lactate, acetate and ethanol were expressed to a greater extent at the beginning of ripening. During the second part of ripening, there was an increased expression of genes involved in the transport and catabolism of amino acids, which could be attributed to a change in the energy source. There was also an increase in the expression of genes involved in autophagy and of genes possibly involved in lifespan determination. Quantification of mRNA transcripts may also be used to produce bioindicators relevant for cheesemaking, for example when considering genes encoding enzymes involved in the catabolism of amino acids.


Assuntos
Queijo/microbiologia , Microbiologia de Alimentos , Regulação Fúngica da Expressão Gênica , Geotrichum/genética , Perfilação da Expressão Gênica , Genes Fúngicos/genética , Geotrichum/metabolismo
6.
Antimicrob Agents Chemother ; 57(5): 2243-51, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23459488

RESUMO

The amgRS operon encodes a presumed membrane stress-responsive two-component system linked to intrinsic aminoglycoside resistance in Pseudomonas aeruginosa. Genome sequencing of a lab isolate showing modest pan-aminoglycoside resistance, strain K2979, revealed a number of mutations, including a substitution in amgS that produced an R182C change in the AmgS sensor kinase product of this gene. Introduction of this mutation into an otherwise wild-type strain recapitulated the resistance phenotype, while correcting the mutation in the resistant mutant abrogated the resistant phenotype, confirming that the amgS mutation is responsible for the aminoglycoside resistance of strain K2979. The amgSR182 mutation promoted an AmgR-dependent, 2- to 3-fold increase in expression of the AmgRS target genes htpX and PA5528, mirroring the impact of aminoglycoside exposure of wild-type cells on htpX and PA5528 expression. This suggests that amgSR182 is a gain-of-function mutation that activates AmgS and the AmgRS two-component system in promoting modest resistance to aminoglycosides. Screening of several pan-aminoglycoside-resistant clinical isolates of P. aeruginosa revealed three that showed elevated htpX and PA5528 expression and harbored single amino acid-altering mutations in amgS (V121G or D106N) and no mutations in amgR. Introduction of the amgSV121G mutation into wild-type P. aeruginosa generated a resistance phenotype reminiscent of the amgSR182 mutant and produced a 2- to 3-fold increase in htpX and PA5528 expression, confirming that it, too, is a gain-of-function aminoglycoside resistance-promoting mutation. These results highlight the contribution of amgS mutations and activation of the AmgRS two-component system to acquired aminoglycoside resistance in lab and clinical isolates of P. aeruginosa.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/efeitos dos fármacos , Genoma Bacteriano , Mutação , Pseudomonas aeruginosa/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Óperon , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , Pseudomonas aeruginosa/metabolismo
7.
PLoS One ; 8(2): e56858, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23441219

RESUMO

Expression of the mexXY multidrug efflux operon in wild type Pseudomonas aeruginosa is substantially enhanced by the ribosome-targeting antimicrobial spectinomycin (18-fold) and this is wholly dependent upon the product of the PA5471 gene. In a mutant strain lacking the mexZ gene encoding a repressor of mexXY gene expression, expression of the efflux operon increases modestly (5-fold) and is still responsive (18-fold) to spectinomycin. Spectinomycin induction of mexXY expression in the mexZ mutant is, however, independent of PA5471 suggesting that PA5471 functions as an anti-repressor (dubbed ArmZ for anti-repressor MexZ) that serves only to modulate MexZ's repressor activity, with additional gene(s)/gene product(s) providing for the bulk of the antimicrobial-inducible mexXY expression. Consistent with PA5471/ArmZ functioning as a MexZ anti-repressor, an interaction between MexZ and ArmZ was confirmed using a bacterial 2-hybrid assay. Mutations compromising this interaction (P68S, G76S, R216C, R221W, R221Q, G231D and G252S) were identified and localized to one region of an ArmZ structural model that may represent a MexZ-interacting domain. Introduction of representative mutations into the chromosome of P. aeruginosa reduced (P68S, G76S) or obviated (R216C, R2211W) antimicrobial induction of mexXY gene expression, rendering the mutants pan-aminoglycoside-susceptible. These data confirm the importance of an ArmZ-MexZ interaction for antimicrobial-inducible mexXY expression and intrinsic aminoglycoside resistance in P. aeruginosa.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Óperon , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Testes de Sensibilidade Microbiana , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica
8.
Antimicrob Agents Chemother ; 56(11): 5591-602, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22908149

RESUMO

Screening of a transposon insertion mutant library of Pseudomonas aeruginosa for increased susceptibility to paromomycin identified a number of genes whose disruption enhanced susceptibility of this organism to multiple aminoglycosides, including tobramycin, amikacin, and gentamicin. These included genes associated with lipid biosynthesis or metabolism (lptA, faoA), phosphate uptake (pstB), and two-component regulators (amgRS, PA2797-PA2798) and a gene of unknown function (PA0392). Deletion mutants lacking these showed enhanced panaminoglycoside susceptibility that was reversed by the cloned genes, confirming their contribution to intrinsic panaminoglycoside resistance. None of these mutants showed increased aminoglycoside permeation of the cell envelope, indicating that increased susceptibility was not related to enhanced aminoglycoside uptake owing to a reduced envelope barrier function. Several mutants (pstB, faoA, PA0392, amgR) did, however, show increased cytoplasmic membrane depolarization relative to wild type following gentamicin exposure, consistent with the membranes of these mutants being more prone to perturbation, likely by gentamicin-generated mistranslated polypeptides. Mutants lacking any two of these resistance genes in various combinations invariably showed increased aminoglycoside susceptibility relative to single-deletion mutants, confirming their independent contribution to resistance and highlighting the complexity of the intrinsic aminoglycoside resistome in P. aeruginosa. Deletion of these genes also compromised the high-level panaminoglycoside resistance of clinical isolates, emphasizing their important contribution to acquired resistance.


Assuntos
Elementos de DNA Transponíveis , Farmacorresistência Bacteriana/genética , Deleção de Genes , Genes Bacterianos , Mutagênese Insercional , Pseudomonas aeruginosa/genética , Amicacina/farmacologia , Antibacterianos/farmacologia , Transporte Biológico/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Biblioteca Gênica , Teste de Complementação Genética , Gentamicinas/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Paromomicina/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Tobramicina/farmacologia
9.
Antimicrob Agents Chemother ; 56(10): 5171-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22825121

RESUMO

Pan-aminoglycoside-resistant Pseudomonas aeruginosa mutants expressing the mexXY components of the aminoglycoside-accommodating MexXY-OprM multidrug efflux system but lacking mutations in the mexZ gene encoding a repressor of this efflux system and in the mexXY promoter have been reported (S. Fraud and K. Poole, Antimicrob. Agents Chemother. 55:1068-1074, 2011). Genome sequencing of one of these mutants, K2966, revealed the presence of a mutation within the predicted promoter region of the rplU-rpmA operon encoding ribosomal proteins L21 and L27, consistent with an observed 2-fold decrease in expression of this operon in the mutant relative to wild-type P. aeruginosa PAO1. Moreover, correction of the mutation restored rplU-rpmA expression and, significantly, reversed the elevated mexXY expression and pan-aminoglycoside resistance of the mutant. Reduced rplU-rpmA expression was also observed in a second mexXY-expressing pan-aminoglycoside-resistant mutant, K2968, which, however, lacked a mutation in the rplU-rpmA promoter region. Restoration of rplU-rpmA expression in the K2968 mutant following chromosomal integration of the rplU-rpmA operon derived from wild-type P. aeruginosa failed, however, to reverse the elevated mexXY expression and pan-aminoglycoside resistance of this mutant, although it did so for K2966, suggesting that the mutation impacting rplU-rpmA expression in K2968 also impacts other mexXY-related genes. Increased mexXY expression owing to reduced rplU-rpmA expression in K2966 and K2968 was dependent on PA5471, whose expression was also elevated in these mutants. Thus, mutational disruption of ribosome function, by limiting expression of ribosomal constituents, promotes recruitment of mexXY and does so via PA5471, reminiscent of mexXY induction by ribosome-disrupting antimicrobial agents. Interestingly, reduced rplU-rpmA expression was also observed in a mexXY-expressing pan-aminoglycoside-resistant clinical isolate, suggesting that ribosome-perturbing mutations have clinical relevance in the recruitment of the MexXY-OprM aminoglycoside resistance determinant.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Membrana/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Proteínas Ribossômicas/genética , Regulação Bacteriana da Expressão Gênica/genética , Óperon/genética , Regiões Promotoras Genéticas , Pseudomonas aeruginosa/genética , Reação em Cadeia da Polimerase em Tempo Real
10.
Antimicrob Agents Chemother ; 55(3): 1068-74, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21173187

RESUMO

Exposure to reactive oxygen species (ROS) (e.g., peroxide) was shown to induce expression of the PA5471 gene, which was previously shown to be required for antimicrobial induction of the MexXY components of the MexXY-OprM multidrug efflux system and aminoglycoside resistance determinant in Pseudomonas aeruginosa. mexXY was also induced by peroxide exposure, and this too was PA5471 dependent. The prospect of ROS promoting mexXY expression and aminoglycoside resistance recalls P. aeruginosa infection of the chronically inflamed lungs of cystic fibrosis (CF) patients, where the organism is exposed to ROS and where MexXY-OprM predominates as the mechanism of aminoglycoside resistance. While ROS did not enhance aminoglycoside resistance in vitro, long-term (8-day) exposure of P. aeruginosa to peroxide (mimicking chronic in vivo ROS exposure) increased aminoglycoside resistance frequency, dependent upon PA5471 and mexXY. This enhanced resistance frequency was also seen in a mutant strain overexpressing PA5471, in the absence of peroxide, suggesting that induction of PA5471 by peroxide was key to peroxide enhancement of aminoglycoside resistance frequency. Resistant mutants selected following peroxide exposure were typically pan-aminoglycoside-resistant, with mexXY generally required for this resistance. Moreover, PA5471 was required for mexXY expression and aminoglycoside resistance in these as well as several CF isolates examined.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Peróxido de Hidrogênio/farmacologia , Testes de Sensibilidade Microbiana , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Reação em Cadeia da Polimerase , Pseudomonas aeruginosa/genética
11.
12.
J Bacteriol ; 189(15): 5441-51, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17545281

RESUMO

nalC multidrug-resistant mutants of Pseudomonas aeruginosa show enhanced expression of the mexAB-oprM multidrug efflux system as a direct result of the production of a ca. 6,100-Da protein, PA3719, in these mutants. Using a bacterial two-hybrid system, PA3719 was shown to interact in vivo with MexR, a repressor of mexAB-oprM expression. Isothermal titration calorimetry (ITC) studies confirmed a high-affinity interaction (equilibrium dissociation constant [K(D)], 158.0 +/- 18.1 nM) of PA3719 with MexR in vitro. PA3719 binding to and formation of a complex with MexR obviated repressor binding to its operator, which overlaps the efflux operon promoter, suggesting that mexAB-oprM hyperexpression in nalC mutants results from PA3719 modulation of MexR repressor activity. Consistent with this, MexR repression of mexA transcription in an in vitro transcription assay was alleviated by PA3719. Mutations in MexR compromising its interaction with PA3719 in vivo were isolated and shown to be located internally and distributed throughout the protein, suggesting that they impacted PA3719 binding by altering MexR structure or conformation rather than by having residues interacting specifically with PA3719. Four of six mutant MexR proteins studied retained repressor activity even in a nalC strain producing PA3719. Again, this is consistent with a PA3719 interaction with MexR being necessary to obviate MexR repressor activity. The gene encoding PA3719 has thus been renamed armR (antirepressor for MexR). A representative "noninteracting" mutant MexR protein, MexR(I104F), was purified, and ITC confirmed that it bound PA3719 with reduced affinity (5.4-fold reduced; K(D), 853.2 +/- 151.1 nM). Consistent with this, MexR(I104F) repressor activity, as assessed using the in vitro transcription assay, was only weakly compromised by PA3719. Finally, two mutations (L36P and W45A) in ArmR compromising its interaction with MexR have been isolated and mapped to a putative C-terminal alpha-helix of the protein that alone is sufficient for interaction with MexR.


Assuntos
Proteínas de Bactérias/fisiologia , Farmacorresistência Bacteriana Múltipla/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas de Membrana Transportadoras/biossíntese , Pseudomonas aeruginosa/fisiologia , Proteínas de Bactérias/metabolismo , Transporte Biológico Ativo/genética , Transporte Biológico Ativo/fisiologia , Farmacorresistência Bacteriana Múltipla/genética , Modelos Moleculares , Mutação , Ligação Proteica , Mapeamento de Interação de Proteínas , Pseudomonas aeruginosa/genética , Proteínas Repressoras/metabolismo , Técnicas do Sistema de Duplo-Híbrido
13.
J Antimicrob Chemother ; 56(4): 672-7, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16141279

RESUMO

AIMS: To assess the potential bactericidal activity of amine oxide (C10-C16-alkyldimethyl N-oxides) against Streptococcus mutans grown as planktonic suspension and as biofilm on hydroxyapatite discs, and its ability to control acidification of the media. METHODS: Amine oxide bacteriostasis was investigated using the Bioscreen C Microbiological Growth Analyser, while a standard suspension test was used to determine its bactericidal efficacy. In addition, the lethal activity of amine oxide was studied against sedimentation biofilms of S. mutans on hydroxyapatite (HA) discs and resuspended biofilms. Several parameters were considered such as the surfactant concentration, pH, the starting inoculum and the maturity of the biofilm. RESULTS: Amine oxide was bacteriostatic against planktonic S. mutans at a low concentration (0.006% v/v) and highly bactericidal against S. mutans in suspension or in a mature biofilm on hydroxyapatite, although the concentration required to achieve the latter effect was four times higher. The activity of amine oxide against biofilms depended upon its concentration and the age of the biofilm. In addition, amine oxide pre-treatment of the HA discs did not affect the growth of the biofilm. Finally, amine oxide did not prevent the acidification of the medium, although lower pHs had a potentiating effect on amine oxide activity. CONCLUSION: Amine oxide showed high potential for controlling early biofilms caused by periodontal bacteria. Further investigations should be carried out, particularly on the potential toxicity of amine oxide and its efficacy in complex formulations for oral care products.


Assuntos
Alcanos/farmacologia , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Higiene Bucal , Óxidos/farmacologia , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Concentração de Íons de Hidrogênio , Cinética , Streptococcus mutans/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...