Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
J Phys Chem Lett ; 15(9): 2493-2498, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38408454

RESUMO

Despite spin (SAM) and orbital (OAM) angular momentum dynamics being well-studied in demagnetization processes, their components receive less focus. Here, we utilize real-time time-dependent density functional theory (rt-TDDFT) to unveil significant x and y components of SAM and OAM induced by circularly left (σ+) and right (σ-) polarized laser pulses in ferromagnetic Fe, Co, and Ni. Our results show that the magnitude of the OAM is an order of magnitude larger than that of the SAM, highlighting a stronger optical response from the orbital degrees of freedom of electrons. Intriguingly, σ+ and σ- pulses induce chirality in the precession of SAM and OAM, respectively, with clear associations with laser frequency and duration. Finally, we demonstrate the time scale of the OAM and SAM precession occurs even earlier than that of the demagnetization process and the OISTR effect. Our results provide detailed insight into the dynamics of SAM and OAM during and shortly after a polarized laser pulse.

2.
Adv Mater ; : e2312402, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38328963

RESUMO

The electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF) provides a feasible way for utilization of biomass resources. However, how to regulate the selective synthesis of multiple value-added products is still a great challenge. The cobalt-based compound is a promising catalyst due to its direct and indirect oxidation properties, but its weak adsorption capacity restricts its further development. Herein, by constructing Ag─Co(OH)2 heterogeneous catalyst, the efficient and selective synthesis of 5-hydroxymethyl-2-furanoic acid (HMFCA) and 2,5-furan dicarboxylic acid (FDCA) at different potential ranges are realized. Based on various physical characterizations, electrochemical measurements, and density functional theory calculations, it is proved that the addition of Ag can effectively promote the oxidation of aldehyde group to a carboxyl group, and then generate HMFCA at low potential. Moreover, the introduction of Ag can activate cobalt-based compounds, thus strengthening the adsorption of organic molecules and OH- species, and promoting the formation of FDCA. This work achieves the selective synthesis of two value-added chemicals by one tandem catalyst and deeply analyzes the adsorption enhancement mechanism of the catalyst, which provides a powerful guidance for the development of efficient heterogeneous catalysts.

3.
J Phys Chem Lett ; 14(50): 11384-11392, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38078872

RESUMO

Understanding the dynamics of photogenerated charge carriers is essential for enhancing the performance of solar and optoelectronic devices. Using atomistic quantum dynamics simulations, we demonstrate that a short π-conjugated optically active template can be used to control hot carrier relaxation, charge carrier separation, and carrier recombination in light-harvesting porphyrin nanorings. Relaxation of hot holes is slowed by 60% with an optically active template compared to that with an analogous optically inactive template. Both systems exhibit subpicosecond electron transfer from the photoactive core to the templates. Notably, charge recombination is suppressed 6-fold by the optically active template. The atomistic time-domain simulations rationalize these effects by the extent of electron and hole localization, modification of the density of states, participation of distinct vibrational motions, and changes in quantum coherence. Extension of the hot carrier lifetime and reduction of charge carrier recombination, without hampering charge separation, demonstrate a strategy for enhancing efficiencies of energy materials with optically active templates.

4.
J Chem Theory Comput ; 19(22): 8481-8490, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37969072

RESUMO

This work reports a Benchmark Data set of Crystalline Organic Semiconductors to test calculations of the structural and electronic properties of these materials in the solid state. The data set contains 67 crystals consisting of mostly rigid molecules with a single dominant conformer, covering the majority of known structural types. The experimental crystal structure is available for the entire data set, whereas zero-temperature unit cell volume can be reliably estimated for a subset of 28 crystals. Using this subset, we benchmark r2SCAN-D3 and PBE-D3 density functionals. Then, for the entire data set, we benchmark approximate density functional theory (DFT) methods, including GFN1-xTB and DFTB3(3ob-3-1), with various dispersion corrections against r2SCAN-D3. Our results show that r2SCAN-D3 geometries are accurate within a few percent, which is comparable to the statistical uncertainty of experimental data at a fixed temperature, but the unit cell volume is systematically underestimated by 2% on average. The several times faster PBE-D3 provides an unbiased estimate of the volume for all systems except for molecules with highly polar bonds, for which the volume is substantially overestimated in correlation with the underestimation of atomic charges. Considered approximate DFT methods are orders of magnitude faster and provide qualitatively correct but overcompressed crystal structures unless the dispersion corrections are fitted by unit cell volume.

5.
J Am Chem Soc ; 145(43): 23630-23638, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37852932

RESUMO

Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) have emerged as a new class of crystalline layered conducting materials that hold significant promise for applications in electronics and spintronics. However, current 2D c-MOFs are mainly made from organic planar ligands, whereas layered 2D c-MOFs constructed by curved or twisted ligands featuring novel orbital structures and electronic states remain less developed. Herein, we report a Cu-catecholate wavy 2D c-MOF (Cu3(HFcHBC)2) based on a fluorinated core-twisted contorted hexahydroxy-hexa-cata-hexabenzocoronene (HFcHBC) ligand. We show that the resulting film is composed of rod-like single crystals with lengths up to ∼4 µm. The crystal structure is resolved by high-resolution transmission electron microscopy (HRTEM) and continuous rotation electron diffraction (cRED), indicating a wavy honeycomb lattice with AA-eclipsed stacking. Cu3(HFcHBC)2 is predicted to be metallic based on theoretical calculation, while the crystalline film sample with numerous grain boundaries apparently exhibits semiconducting behavior at the macroscopic scale, characterized by obvious thermally activated conductivity. Temperature-dependent electrical conductivity measurements on the isolated single-crystal devices indeed demonstrate the metallic nature of Cu3(HFcHBC)2, with a very weak thermally activated transport behavior and a room-temperature conductivity of 5.2 S cm-1. Furthermore, the 2D c-MOFs can be utilized as potential electrode materials for energy storage, which display decent capacity (163.3 F g-1) and excellent cyclability in an aqueous 5 M LiCl electrolyte. Our work demonstrates that wavy 2D c-MOF using contorted ligands are capable of intrinsic metallic transport, marking the emergence of new conductive MOFs for electronic and energy applications.

6.
Nanoscale ; 15(42): 16992-16997, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37830447

RESUMO

The potential to detect and manipulate the valley degree of freedom within two-dimensional hexagonal lattices possessing both inversion asymmetry and time-reversal symmetry is theoretically feasible. Intrinsic ferrovalley polarization in MXenes could be induced by asymmetric surface functionalization to break their inversion symmetry and the presence of spin-orbital coupling ensures their time-reversal symmetry. Our results indicate that the ferromagnetic Cr2COF MXene with Janus functionalization becomes an intrinsic Chern insulator with large spin-valley polarization and belongs to the family of quantum anomalous valley Hall effect (QAVHE) materials, based on Berry curvature and edge state calculations. Applying chemical engineering of functionalization to magnetic MXenes allows us to tune the structure-property relationship in 2D layers to obtain desirable spin-valley coupling. Our theoretical insight into the QAVHE on magnetic MXenes with asymmetry functionalization provides a new opportunity for valleytronics and spintronics.

7.
Nano Lett ; 23(20): 9468-9473, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37830499

RESUMO

Crystalline Bi4O4SeCl2 exhibits record-low 0.1 W/mK lattice thermal conductivity (κL), but the underlying transport mechanism is not yet understood. Using a theoretical framework which incorporates first-principles anharmonic lattice dynamics into a unified heat transport theory, we compute both the particle-like and glass-like components of κL in crystalline and pellet Bi4O4SeCl2 forms. The model includes intrinsic three- and four-phonon scattering processes and extrinsic defect and extended defect scattering contributing to the phonon lifetime, as well as temperature-dependent interatomic force constants linked to phonon frequency shifts and anharmonicity. Bi4O4SeCl2 displays strongly anisotropic complex crystal behavior with dominant glass-like transport along the cross-plane direction. The uncovered origin of κL underscores an intrinsic approach for designing extremely low κL materials.

8.
J Phys Chem Lett ; 14(36): 8139-8144, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37669454

RESUMO

Using ab initio lattice dynamics and a unified heat transport theory, we compute the lattice thermal conductivity (κL) of Li5Sn, a newly synthesized crystalline material for Li-ion batteries. The weak bonding in the Li-rich environment leads to significant softening of the optical phonon modes, temperature-induced hardening, and strong anharmonicity. This complexity is captured in the particle-like and glass-like components of κL by accounting for the temperature-dependent interatomic force constants acting on the renormalized phonon frequencies and three- and four-phonon scatterings contributing to the phonon lifetime. We predict very low room-temperature κL values of 0.857, 0.599, and 0.961 W/mK for the experimental Cmcm phase and 0.996, 0.908, and 1.385 W/mK for the theoretically predicted Immm phase along the main crystallographic directions. Both phases display complex crystal behavior with glass-like transport exceeding 20% above room-temperature and an unusual κL temperature dependence. Our results can be used to inform system-level thermal models of Li-ion batteries.

9.
Angew Chem Int Ed Engl ; 62(43): e202310973, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37667678

RESUMO

Full understanding to the origin of the catalytic performance of a supported nanocatalyst from the points of view of both the active component and support is significant for the achievement of high performance. Herein, based on a model electrocatalyst of single-iridium-atom-doped iron (Fe)-based layered double hydroxides (LDH) for oxygen evolution reaction (OER), we reveal the first completed origin of the catalytic performance of such supported nanocatalysts. Specially, besides the activity enhancement of Ir sites by LDH support, the stability of surface Fe sites is enhanced by doped Ir sites: DFT calculation shows that the Ir sites can reduce the activity and enhance the stability of the nearby Fe sites; while further finite element simulations indicate, the stability enhancement of distant Fe sites could be attributed to the much low concentration of OER reactant (hydroxyl ions, OH- ) around them induced by the much fast consumption of OH- on highly active Ir sites. These new findings about the interaction between the main active components and supports are applicable in principle to other heterogeneous nanocatalysts and provide a completed understanding to the catalytic performance of heterogeneous nanocatalysts.

10.
Nano Lett ; 23(17): 8348-8354, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37642209

RESUMO

We employ real-time time-dependent density functional theory (rt-TDDFT) and ab initio nonadiabatic molecular dynamics (NAMD) to systematically investigate the ultrafast laser pulses induced spin transfer and relaxation dynamics of two-dimensional (2D) antiferromagnetic-ferromagnetic (AFM/FM) MnPS3/MnSe2 van der Waals heterostructures. We demonstrate that laser pulses can induce a ferrimagnetic (FiM) state in the AFM MnPS3 layer within tens of femtoseconds and maintain it for subpicosecond time scale before reverting to the AFM state. We identify the mechanism in which the asymmetric optical intersite spin transfer (OISTR) effect occurring within the sublattices of the AFM and FM layers drives the interlayer spin-selective charge transfer, leading to the transition from AFM to FiM state. Furthermore, the unequal electron-phonon coupling of spin-up and spin-down channels of AFM spin sublattice causes an inequivalent spin relaxation, in turn extending the time scale of the FiM state. These findings are essential for designing novel optical-driven ultrafast 2D magnetic switches.

11.
Nano Lett ; 23(12): 5688-5695, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37307217

RESUMO

Realizing ultrafast control of magnetization switching is of crucial importance for information processing and recording technology. Here, we explore the laser-induced spin electron excitation and relaxation dynamics processes of CrCl3/CrBr3 heterostructures with antiparallel (AP) and parallel (P) systems. Although an ultrafast demagnetization of CrCl3 and CrBr3 layers occurs in both AP and P systems, the overall magnetic order of the heterostructure remains unchanged due to the laser-induced equivalent interlayer spin electron excitation. More crucially, the interlayer magnetic order switches from antiferromagnetic (AFM) to ferrimagnetic (FiM) in the AP system once the laser pulse disappears. The microscopic mechanism underpinning this magnetization switching is dominated by the asymmetrical interlayer charge transfer combined with a spin-flip, which breaks the interlayer AFM symmetry and ultimately results in an inequivalent shift in the moment between two FM layers. Our study opens up a new idea for ultrafast laser control of magnetization switching in two-dimensional opto-spintronic devices.

12.
Phys Rev Lett ; 130(23): 233201, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37354411

RESUMO

Light-induced energy confinement in nanoclusters via plasmon excitations influences applications in nanophotonics, photocatalysis, and the design of controlled slow electron sources. The resonant decay of these excitations through the cluster's ionization continuum provides a unique probe of the collective electronic behavior. However, the transfer of a part of this decay amplitude to the continuum of a second conjugated cluster may offer control and efficacy in sharing the energy nonlocally to instigate remote collective events. With the example of a spherically nested dimer Na_{20}@C_{240} of two plasmonic systems we find that such a transfer is possible through the resonant intercluster Coulombic decay (RICD) as a fundamental process. This plasmonic RICD signal can be experimentally detected by the photoelectron velocity map imaging technique.

13.
J Chem Theory Comput ; 19(13): 3877-3888, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37350192

RESUMO

Density functional tight binding (DFTB) is an approximate density functional based quantum chemical simulation method with low computational cost. In order to increase its accuracy, we have introduced a machine learning algorithm to optimize several parameters of the DFTB method, concentrating on solids with defects. The backpropagation algorithm was used to reduce the error between DFTB and DFT results with respect to the training data set and to obtain adjusted DFTB Hamiltonian and overlap matrix elements. Afterward, the generalization capability of the trained model was tested for geometries not being part of the training set. In the current work, we have focused on defective periodic silicon and silicon carbide systems as target materials and the density of states (DOS) as target property to demonstrate the feasibility of our approach. The trained model was able to reduce the differences between the DFTB and DFT DOS significantly, while other derived properties (for example, Mulliken population distribution, projected DOS) remained physically sound. Also, the transferability of the obtained model could be verified. Our method allows to carry out relatively fast simulations with high accuracy and only moderate training efforts, and represents a good compromise for cases, where long-range effects make direct machine learning predictions difficult.

14.
Chem Sci ; 14(18): 4714-4723, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37181766

RESUMO

Heterogeneous catalysis of adsorbates on metallic surfaces mediated by plasmons has potential high photoelectric conversion efficiency and controllable reaction selectivity. Theoretical modeling of dynamical reaction processes enables in-depth analyses complementing experimental investigations. Especially for plasmon-mediated chemical transformations, light absorption, photoelectric conversion, electron-electron scattering, and electron-phonon coupling occur simultaneously on different timescales, making it very challenging to delineate the complex interplay of different factors. In this work, a trajectory surface hopping non-adiabatic molecular dynamics method is used to investigate the dynamics of plasmon excitation in an Au20-CO system, including hot carrier generation, plasmon energy relaxation, and CO activation induced by electron-vibration coupling. The electronic properties indicate that when Au20-CO is excited, a partial charge transfer takes place from Au20 to CO. On the other hand, dynamical simulations show that hot carriers generated after plasmon excitation transfer back and forth between Au20 and CO. Meanwhile, the C-O stretching mode is activated due to non-adiabatic couplings. The efficiency of plasmon-mediated transformations (∼40%) is obtained based on the ensemble average of these quantities. Our simulations provide important dynamical and atomistic insights into plasmon-mediated chemical transformations from the perspective of non-adiabatic simulations.

15.
J Am Chem Soc ; 145(16): 8757-8763, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37042822

RESUMO

Graphene nanoribbon heterostructures and heterojunctions have attracted interest as next-generation molecular diodes with atomic precision. Their mass production via solution methods and prototypical device integration remains to be explored. Here, the bottom-up solution synthesis and characterization of liquid-phase-processable graphene nanoribbon heterostructures (GNRHs) are demonstrated. Joint photoresponsivity measurements and simulations provide evidence of the structurally defined heterostructure motif acting as a type-I heterojunction. Real-time, time-dependent density functional tight-binding simulations further reveal that the photocurrent polarity can be tuned at different excitation wavelengths. Our results introduce liquid-phase-processable, self-assembled heterojunctions for the development of nanoscale diode circuitry and adaptive hardware.

16.
Angew Chem Int Ed Engl ; 62(23): e202302126, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37051748

RESUMO

Supramolecular self-assembly is a promising strategy for stabilizing the photo-sensitive components in photocatalysis. However, the underlying correlation between the enhanced photostability and supramolecular structure at the molecular level has not yet been fully understood. Herein, we develop a biomimetic vesicular membrane-based polyporphyrin photocatalyst exhibiting excellent photocatalytic stability with at least activity time of 240 h in hydrogen generation. Time-domain ab initio modelling together with transient absorption spectroscopy, visual frontier orbitals and Gibbs free energy calculation disclose that the ordered aggregation of porphyrin units in the vesicle membrane facilitates "hot" electron relaxation and the rapid dissipation of photo-generated charges, thereby contributing to the longevity. This work deepens the molecular-level understanding on photostability and photocatalytic mechanism of supramolecular photocatalysts.

17.
Phys Rev Lett ; 130(10): 108001, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36962043

RESUMO

We present a femtosecond time-resolved optical pump-soft x-ray probe photoemission study in which we follow the dynamics of charge transfer at the interface of water and anatase TiO_{2}(101). By combining our observation of transient oxygen O 1s core level peak shifts at submonolayer water coverages with Ehrenfest molecular dynamics simulations we find that ultrafast interfacial hole transfer from TiO_{2} to molecularly adsorbed water is completed within the 285 fs time resolution of the experiment. This is facilitated by the formation of a new hydrogen bond between an O_{2c} site at the surface and a physisorbed water molecule. The calculations fully corroborate our experimental observations and further suggest that this process is preceded by the efficient trapping of the hole at the surface of TiO_{2} by hydroxyl species (-OH), that form following the dissociative adsorption of water. At a water coverage exceeding a monolayer, interfacial charge transfer is suppressed. Our findings are directly applicable to a wide range of photocatalytic systems in which water plays a critical role.

18.
Adv Sci (Weinh) ; 10(9): e2205934, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36683244

RESUMO

Using a density functional theory-based thermal transport model, which includes the effects of temperature (T)-dependent potential energy surface, lattice thermal expansion, force constant renormalization, and higher-order quartic phonon scattering processes, it is found that the recently synthesized nitride perovskite LaWN3 displays strong anharmonic lattice dynamics manifested into a low lattice thermal conductivity (κL ) and a non-standard κL ∝T-0.491 dependence. At high T, the departure from the standard κL ∝T-1 law originates in the dual particle-wave behavior of the heat carrying phonons, which includes vibrations tied to the N atoms. While the room temperature κL =2.98 W mK-1 arises mainly from the conventional particle-like propagation of phonons, there is also a significant atypical wave-like phonon tunneling effect, leading to a 20% glass-like heat transport contribution. The phonon broadening effect lowers the particle-like contribution but increases the glass-like one. Upon T increase, the glass-like contribution increases and dominates above T = 850 K. Overall, the low κL with a weak T-dependence points to a new utility for LaWN3 in energy technology applications, and motivates synthesis and exploration of nitride perovskites.

19.
Small ; 19(18): e2206218, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36670078

RESUMO

By introducing different contents of Bi adatoms to the surface of monolayer graphene, the carrier concentration and their dynamics have been effectively modulated as probed directly by the time- and angle-resolved photoemission spectroscopy technique. The Bi adatoms are found to assist acoustic phonon scattering events mediated by supercollisions as the disorder effectively relaxes the momentum conservation constraint. A reduced carrier multiplication has been observed, which is related to the shrinking Fermi sea for scattering, as confirmed by time-dependent density functional theory simulation. This work gives insight into hot carrier dynamics in graphene, which is crucial for promoting the application of photoelectric devices.

20.
J Chem Phys ; 157(21): 214201, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36511539

RESUMO

Hot carriers generated from the decay of plasmon excitation can be harvested to drive a wide range of physical or chemical processes. However, their generation efficiency is limited by the concomitant phonon-induced relaxation processes by which the energy in excited carriers is transformed into heat. However, simulations of dynamics of nanoscale clusters are challenging due to the computational complexity involved. Here, we adopt our newly developed Trajectory Surface Hopping (TSH) nonadiabatic molecular dynamics algorithm to simulate plasmon relaxation in Au20 clusters, taking the atomistic details into account. The electronic properties are treated within the Linear Response Time-Dependent Tight-binding Density Functional Theory (LR-TDDFTB) framework. The relaxation of plasmon due to coupling to phonon modes in Au20 beyond the Born-Oppenheimer approximation is described by the TSH algorithm. The numerically efficient LR-TDDFTB method allows us to address a dense manifold of excited states to ensure the inclusion of plasmon excitation. Starting from the photoexcited plasmon states in Au20 cluster, we find that the time constant for relaxation from plasmon excited states to the lowest excited states is about 2.7 ps, mainly resulting from a stepwise decay process caused by low-frequency phonons of the Au20 cluster. Furthermore, our simulations show that the lifetime of the phonon-induced plasmon dephasing process is ∼10.4 fs and that such a swift process can be attributed to the strong nonadiabatic effect in small clusters. Our simulations demonstrate a detailed description of the dynamic processes in nanoclusters, including plasmon excitation, hot carrier generation from plasmon excitation dephasing, and the subsequent phonon-induced relaxation process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...