Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Sports Med ; 52(1): 87-95, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38164684

RESUMO

BACKGROUND: The way in which force increases in the anterolateral tissues and the lateral extra-articular tenodesis (LET) tissue to resist internal rotation (IR) of the tibia after anterior cruciate ligament (ACL) reconstruction in isolation and after LET augmentation, respectively, is not well understood. PURPOSE: (1) To compare in a cadaveric model how force increases (ie, engages) in the anterolateral tissues with IR of the tibia after isolated ACL reconstruction and in the LET tissue after augmentation of the ACL reconstruction with LET and (2) to determine whether IR of the tibia is related to engagement of the LET tissue. STUDY DESIGN: Controlled laboratory study. METHODS: IR moments were applied to 9 human cadaveric knees at 0°, 30°, 60°, and 90° of flexion using a robotic manipulator. Each knee was tested in 2 states: (1) after isolated ACL reconstruction with intact anterolateral tissues and (2) after LET was performed using a modified Lemaire technique with the LET tissue fixed at 60° of flexion under 44 N of tension. Resultant forces carried by the anterolateral tissues and the LET tissue were determined via superposition. The way force increased in these tissues was characterized via parameters of tissue engagement, namely in situ slack, in situ stiffness, and tissue force at peak applied IR moment, and then compared (α < .05). IR was related to parameters of engagement of the LET tissue via simple linear regression (α < .05). RESULTS: The LET tissue exhibited less in situ slack than the anterolateral tissues at 30°, 60°, and 90° of flexion (P≤ .04) and greater in situ stiffness at 30° and 90° of flexion (P≤ .043). The LET tissue carried greater force at the peak applied IR moment at 0° and 30° of flexion (P≤ .01). IR was related to the in situ slack of the LET tissue (R2≥ 0.88; P≤ .0003). CONCLUSION: LET increased restraint to IR of the tibia compared with the anterolateral tissue, particularly at 30°, 60°, and 90° of flexion. IR of the tibia was positively associated with in situ slack of the LET tissue. CLINICAL RELEVANCE: Fixing the LET at 60° of flexion still provided IR restraint in the more functionally relevant flexion angle of 30°. Surgeons should pay close attention to the angle of internal and/or external tibial rotation when fixing the LET tissue intraoperatively because this surgical parameter is related to in situ slack of the LET tissue and, therefore, the amount of IR of the tibia.


Assuntos
Lesões do Ligamento Cruzado Anterior , Instabilidade Articular , Tenodese , Humanos , Tenodese/métodos , Lesões do Ligamento Cruzado Anterior/cirurgia , Fenômenos Biomecânicos , Cadáver , Instabilidade Articular/cirurgia , Articulação do Joelho/cirurgia , Amplitude de Movimento Articular
2.
Am J Sports Med ; 49(11): 2898-2907, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34314283

RESUMO

BACKGROUND: There is concern that utilization of lateral extra-articular tenodesis (LET) in conjunction with anterior cruciate ligament (ACL) reconstruction (ACLR) may disturb lateral compartment contact mechanics and contribute to joint degeneration. HYPOTHESIS: ACLR augmented with LET will alter lateral compartment contact mechanics in response to simulated pivoting maneuvers. STUDY DESIGN: Controlled laboratory study. METHODS: Loads simulating a pivot shift were applied to 7 cadaveric knees (4 male; mean age, 39 ± 12 years; range, 28-54 years) using a robotic manipulator. Each knee was tested with the ACL intact, sectioned, reconstructed (via patellar tendon autograft), and, finally, after augmenting ACLR with LET (using a modified Lemaire technique) in the presence of a sectioned anterolateral ligament and Kaplan fibers. Lateral compartment contact mechanics were measured using a contact stress transducer. Outcome measures were anteroposterior location of the center of contact stress (CCS), contact force from anterior to posterior, and peak and mean contact stress. RESULTS: On average, augmenting ACLR with LET shifted the lateral compartment CCS anteriorly compared with the intact knee and compared with ACLR in isolation by a maximum of 5.4 ± 2.3 mm (P < .001) and 6.0 ± 2.6 mm (P < .001), respectively. ACLR augmented with LET also increased contact force anteriorly on the lateral tibial plateau compared with the intact knee and compared with isolated ACLR by a maximum of 12 ± 6 N (P = .001) and 17 ± 10 N (P = .002), respectively. Compared with ACLR in isolation, ACLR augmented with LET increased peak and mean lateral compartment contact stress by 0.7 ± 0.5 MPa (P = .005) and by 0.17 ± 0.12 (P = .006), respectively, at 15° of flexion. CONCLUSION: Under simulated pivoting loads, adding LET to ACLR anteriorized the CCS on the lateral tibial plateau, thereby increasing contact force anteriorly. Compared with ACLR in isolation, ACLR augmented with LET increased peak and mean lateral compartment contact stress at 15° of flexion. CLINICAL RELEVANCE: The clinical and biological effect of increased anterior loading of the lateral compartment after LET merits further investigation. The ability of LET to anteriorize contact stress on the lateral compartment may be useful in knees with passive anterior subluxation of the lateral tibia.


Assuntos
Lesões do Ligamento Cruzado Anterior , Instabilidade Articular , Tenodese , Adulto , Lesões do Ligamento Cruzado Anterior/cirurgia , Fenômenos Biomecânicos , Cadáver , Humanos , Instabilidade Articular/cirurgia , Articulação do Joelho/cirurgia , Masculino , Pessoa de Meia-Idade , Amplitude de Movimento Articular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...