Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Haematol ; 176(4): 583-590, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28055107

RESUMO

Fenretinide, a synthetic retinoid, induces apoptotic cell death in B-cell non-Hodgkin lymphoma (B-NHL) and acts synergistically with rituximab in preclinical models. We report results from a phase I-II study of fenretinide with rituximab for B-NHLs. Eligible diagnoses included indolent B-NHL or mantle cell lymphoma. The phase I design de-escalated from fenretinide at 900 mg/m2 PO BID for days 1-5 of a 7-day cycle. The phase II portion added 375 mg/m2 IV rituximab weekly on weeks 5-9 then every 3 months. Fenretinide was continued until progression or intolerance. Thirty-two patients were treated: 7 in phase I, and 25 in phase II of the trial. No dose-limiting toxicities were observed. The phase II component utilized fenretinide 900 mg/m2 twice daily with rituximab. The most common treatment-related adverse events of grade 3 or higher were rash (n = 3) and neutropenia (n = 3). Responses were seen in 6 (24%) patients on the phase II study, with a median duration of response of 47 months (95% confidence interval, 2-56). The combination of fenretinide and rituximab was well tolerated, yielded a modest overall response rate, but with prolonged remission durations. Further study should focus on identifying the responsive subset of B-NHL.


Assuntos
Fenretinida/administração & dosagem , Linfoma de Células B/tratamento farmacológico , Linfoma de Célula do Manto/tratamento farmacológico , Rituximab/administração & dosagem , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Sinergismo Farmacológico , Exantema/induzido quimicamente , Feminino , Humanos , Linfoma de Células B/complicações , Linfoma de Célula do Manto/complicações , Masculino , Pessoa de Meia-Idade , Neutropenia/induzido quimicamente , Indução de Remissão
2.
Cancer Res ; 76(22): 6669-6679, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27590740

RESUMO

Streptavidin (SA)-biotin pretargeted radioimmunotherapy (PRIT) that targets CD20 in non-Hodgkin lymphoma (NHL) exhibits remarkable efficacy in model systems, but SA immunogenicity and interference by endogenous biotin may complicate clinical translation of this approach. In this study, we engineered a bispecific fusion protein (FP) that evades the limitations imposed by this system. Briefly, one arm of the FP was an anti-human CD20 antibody (2H7), with the other arm of the FP an anti-chelated radiometal trap for a radiolabeled ligand (yttrium[Y]-DOTA) captured by a very high-affinity anti-Y-DOTA scFv antibody (C825). Head-to-head biodistribution experiments comparing SA-biotin and bispecific FP (2H7-Fc-C825) PRIT in murine subjects bearing human lymphoma xenografts demonstrated nearly identical tumor targeting by each modality at 24 hours. However, residual radioactivity in the blood and normal organs was consistently higher following administration of 1F5-SA compared with 2H7-Fc-C825. Consequently, tumor-to-normal tissue ratios of distribution were superior for 2H7-Fc-C825 (P < 0.0001). Therapy studies in subjects bearing either Ramos or Granta subcutaneous lymphomas demonstrated that 2H7-Fc-C825 PRIT is highly effective and significantly less myelosuppressive than 1F5-SA (P < 0.0001). All animals receiving optimal doses of 2H7-Fc-C825 followed by 90Y-DOTA were cured by 150 days, whereas the growth of tumors in control animals progressed rapidly with complete morbidity by 25 days. In addition to demonstrating reduced risk of immunogenicity and an absence of endogenous biotin interference, our findings offer a preclinical proof of concept for the preferred use of bispecific PRIT in future clinical trials, due to a slightly superior biodistribution profile, less myelosuppression, and superior efficacy. Cancer Res; 76(22); 6669-79. ©2016 AACR.


Assuntos
Anticorpos Biespecíficos/metabolismo , Linfoma de Células B/tratamento farmacológico , Linfoma de Células B/radioterapia , Radioimunoterapia/métodos , Estreptavidina/uso terapêutico , Animais , Anticorpos Biespecíficos/análise , Feminino , Humanos , Linfoma de Células B/patologia , Camundongos , Estreptavidina/farmacologia
3.
J Nucl Med ; 56(11): 1766-73, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26338894

RESUMO

UNLABELLED: α-radioimmunotherapy targeting CD45 may substitute for total-body irradiation in hematopoietic cell transplantation (HCT) preparative regimens for lymphoma. Our goal was to optimize the anti-CD45 monoclonal antibody (mAb; CA12.10C12) protein dose for (211)At-radioimmunotherapy, extending the analysis to include intraorgan (211)At activity distribution and α-imaging-based small-scale dosimetry, along with immunohistochemical staining. METHODS: Eight normal dogs were injected with either a 0.75 (n = 5) or 1.00 (n = 3) mg/kg dose of (211)At-B10-CA12.10C12 (11.5-27.6 MBq/kg). Two were euthanized and necropsied 19-22 h after injection, and 6 received autologous HCT 3 d after (211)At-radioimmunotherapy, after lymph node and bone marrow biopsies at 2-4 and/or 19 h after injection. Blood was sampled to study toxicity and clearance; CD45 targeting was evaluated by flow cytometry. (211)At localization and small-scale dosimetry were assessed using two α-imaging systems: an α-camera and an ionizing-radiation quantum imaging detector (iQID) camera. RESULTS: (211)At uptake was highest in the spleen (0.31-0.61% injected activity [%IA]/g), lymph nodes (0.02-0.16 %IA/g), liver (0.11-0.12 %IA/g), and marrow (0.06-0.08 %IA/g). Lymphocytes in blood and marrow were efficiently targeted using either mAb dose. Lymph nodes remained unsaturated but displayed targeted (211)At localization in T lymphocyte-rich areas. Absorbed doses to blood, marrow, and lymph nodes were estimated at 3.1, 2.4, and 3.4 Gy/166 MBq, respectively. All transplanted dogs experienced transient hepatic toxicity. Liver enzyme levels were temporarily elevated in 5 of 6 dogs; one treated with 1.00 mg mAb/kg developed ascites and was euthanized 136 d after HCT. CONCLUSION: (211)At-anti-CD45 radioimmunotherapy with 0.75 mg mAb/kg efficiently targeted blood and marrow without severe toxicity. Dosimetry calculations and observed radiation-induced effects indicated that sufficient (211)At-B10-CA12.10C12 localization was achieved for efficient conditioning for HCT.


Assuntos
Astato/farmacocinética , Transplante de Células-Tronco Hematopoéticas/métodos , Antígenos Comuns de Leucócito , Radioimunoterapia/métodos , Compostos Radiofarmacêuticos/farmacocinética , Partículas alfa , Animais , Ascite/diagnóstico por imagem , Astato/efeitos adversos , Biópsia , Medula Óssea/diagnóstico por imagem , Cães , Sistemas de Liberação de Medicamentos , Imuno-Histoquímica , Linfonodos/diagnóstico por imagem , Radiometria , Cintilografia , Compostos Radiofarmacêuticos/efeitos adversos , Baço/diagnóstico por imagem , Linfócitos T/diagnóstico por imagem , Distribuição Tecidual
4.
Anticancer Drugs ; 26(9): 974-83, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26237500

RESUMO

Mantle cell lymphoma (MCL) remains incurable for most patients, and proteasome inhibitors like bortezomib induce responses in a minority of patients with relapsed disease. Fenretinide is a retinoid that has shown preclinical activity in B-cell lymphomas. We hypothesized that these agents could yield augmented antitumor activity. MCL lines (Granta-519, Jeko-1, and Rec-1) were treated with escalating concentrations of bortezomib and fenretinide singly and in combination. Cytotoxicity was assessed using the MTT assay. Flow cytometric methods were used to assess apoptosis and necrosis, with annexin V-FITC/propidium iodide staining, and G1 and G2 cell-cycle changes were assessed by DAPI staining. Changes in cyclin D1, cyclin B, IκBα, and IKKα expressions were quantified by western blotting. Cytotoxicity was mediated through apoptosis; both agents showed observed versus expected cytotoxicities of 92.2 versus 55.1% in Granta-519, of 87.6 versus 36.3% in Jeko-1, and of 63.2 versus 29.8% in Rec-1. Isobolographic analysis confirmed synergy in Jeko-1 and Rec-1 cell lines. Bortezomib induced G2-phase arrest, with a 1.7-fold increase compared with control, and fenretinide resulted in G1-phase arrest, with an increase of 1.3-fold compared with control. In the combination, G2-phase arrest predominated, with a 1.4-fold increase compared with control, and there was reduced expression of cyclin D1 to 24%, cyclin B to 52 and 64%, cyclin D3 to 25 and 43%, IκBα to 23 and 46%, and IκBα kinase to 34 and 44%. Bortezomib and fenretinide exhibit synergistic cytotoxicity against MCL cell lines. This activity is mediated by IκBα kinase modulation, decreased cyclin expression, cell cycle dysregulation, and apoptotic cell death.


Assuntos
Antineoplásicos/farmacologia , Ácidos Borônicos/farmacologia , Fenretinida/farmacologia , Linfoma de Célula do Manto/patologia , Pirazinas/farmacologia , Apoptose/efeitos dos fármacos , Bortezomib , Linhagem Celular Tumoral/efeitos dos fármacos , Ciclina B/metabolismo , Ciclina D1/metabolismo , Ciclina D3/metabolismo , Sinergismo Farmacológico , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Proteínas I-kappa B/metabolismo , Inibidor de NF-kappaB alfa
5.
Med Phys ; 42(7): 4094-105, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26133610

RESUMO

PURPOSE: Alpha-emitting radionuclides exhibit a potential advantage for cancer treatments because they release large amounts of ionizing energy over a few cell diameters (50-80 µm), causing localized, irreparable double-strand DNA breaks that lead to cell death. Radioimmunotherapy (RIT) approaches using monoclonal antibodies labeled with α emitters may thus inactivate targeted cells with minimal radiation damage to surrounding tissues. Tools are needed to visualize and quantify the radioactivity distribution and absorbed doses to targeted and nontargeted cells for accurate dosimetry of all treatment regimens utilizing α particles, including RIT and others (e.g., Ra-223), especially for organs and tumors with heterogeneous radionuclide distributions. The aim of this study was to evaluate and characterize a novel single-particle digital autoradiography imager, the ionizing-radiation quantum imaging detector (iQID) camera, for use in α-RIT experiments. METHODS: The iQID camera is a scintillator-based radiation detection system that images and identifies charged-particle and gamma-ray/x-ray emissions spatially and temporally on an event-by-event basis. It employs CCD-CMOS cameras and high-performance computing hardware for real-time imaging and activity quantification of tissue sections, approaching cellular resolutions. In this work, the authors evaluated its characteristics for α-particle imaging, including measurements of intrinsic detector spatial resolutions and background count rates at various detector configurations and quantification of activity distributions. The technique was assessed for quantitative imaging of astatine-211 ((211)At) activity distributions in cryosections of murine and canine tissue samples. RESULTS: The highest spatial resolution was measured at ∼20 µm full width at half maximum and the α-particle background was measured at a rate as low as (2.6 ± 0.5) × 10(-4) cpm/cm(2) (40 mm diameter detector area). Simultaneous imaging of multiple tissue sections was performed using a large-area iQID configuration (ø 11.5 cm). Estimation of the (211)At activity distribution was demonstrated at mBq/µg-levels. CONCLUSIONS: Single-particle digital autoradiography of α emitters has advantages over traditional film-based autoradiographic techniques that use phosphor screens, in terms of spatial resolution, sensitivity, and activity quantification capability. The system features and characterization results presented in this study show that the iQID is a promising technology for microdosimetry, because it provides necessary information for interpreting alpha-RIT outcomes and for predicting the therapeutic efficacy of cell-targeted approaches using α emitters.


Assuntos
Autorradiografia/instrumentação , Autorradiografia/métodos , Câmaras gama , Radioimunoterapia/instrumentação , Radioimunoterapia/métodos , Animais , Antígenos CD20/administração & dosagem , Astato , Cães , Desenho de Equipamento , Feminino , Antígenos Comuns de Leucócito/administração & dosagem , Linfonodos/diagnóstico por imagem , Linfonodos/imunologia , Linfonodos/efeitos da radiação , Linfoma não Hodgkin/diagnóstico por imagem , Linfoma não Hodgkin/imunologia , Linfoma não Hodgkin/radioterapia , Camundongos , Camundongos Nus , Transplante de Neoplasias , Imagens de Fantasmas , Radiografia , Software
6.
PLoS One ; 10(3): e0120561, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25785845

RESUMO

PURPOSE: Pretargeted radioimmunotherapy (PRIT) is a multi-step method of selectively delivering high doses of radiotherapy to tumor cells while minimizing exposure to surrounding tissues. Yttrium-90 (90Y) and lutetium-177 (177Lu) are two of the most promising beta-particle emitting radionuclides used for radioimmunotherapy, which despite having similar chemistries differ distinctly in terms of radiophysical features. These differences may have important consequences for the absorbed dose to tumors and normal organs. Whereas 90Y has been successfully applied in a number of preclinical and clinical radioimmunotherapy settings, there have been few published pretargeting studies with 177Lu. We therefore compared the therapeutic potential of targeting either 90Y or 177Lu to human B-cell lymphoma xenografts in mice. METHODS: Parallel experiments evaluating the biodistribution, imaging, dosimetry, therapeutic efficacy, and toxicity were performed in female athymic nude mice bearing either Ramos (Burkitt lymphoma) or Granta (mantle cell lymphoma) xenografts, utilizing an anti-CD20 antibody-streptavidin conjugate (1F5-SA) and an 90Y- or 177Lu-labeled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-biotin second step reagent. RESULTS: The two radionuclides displayed comparable biodistributions in tumors and normal organs; however, the absorbed radiation dose delivered to tumor was more than twice as high for 90Y (1.3 Gy/MBq) as for 177Lu (0.6 Gy/MBq). More importantly, therapy with 90Y-DOTA-biotin was dramatically more effective than with 177Lu-DOTA-biotin, with 100% of Ramos xenograft-bearing mice cured with 37 MBq 90Y, whereas 0% were cured using identical amounts of 177Lu-DOTA-biotin. Similar results were observed in mice bearing Granta xenografts, with 80% of the mice cured with 90Y-PRIT and 0% cured with 177Lu-PRIT. Toxicities were comparable with both isotopes. CONCLUSION: 90Y was therapeutically superior to 177Lu for streptavidin-biotin PRIT approaches in these human lymphoma xenograft models.


Assuntos
Antígenos CD20/imunologia , Imunoconjugados/uso terapêutico , Lutécio/uso terapêutico , Linfoma/radioterapia , Radioimunoterapia/métodos , Radioisótopos de Ítrio/uso terapêutico , Animais , Partículas beta/uso terapêutico , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Feminino , Humanos , Imunoconjugados/efeitos adversos , Imunoconjugados/imunologia , Lutécio/efeitos adversos , Lutécio/farmacocinética , Linfoma/imunologia , Linfoma/patologia , Camundongos , Camundongos Nus , Radioimunoterapia/efeitos adversos , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto , Radioisótopos de Ítrio/efeitos adversos , Radioisótopos de Ítrio/farmacocinética
7.
Blood ; 125(13): 2111-9, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25628467

RESUMO

α-Emitting radionuclides deposit a large amount of energy within a few cell diameters and may be particularly effective for radioimmunotherapy targeting minimal residual disease (MRD). To evaluate this hypothesis, (211)At-labeled 1F5 monoclonal antibody (mAb) (anti-CD20) was studied in both bulky lymphoma tumor xenograft and MRD animal models. Superior treatment responses to (211)At-labeled 1F5 mAb were evident in the MRD setting. Lymphoma xenograft tumor-bearing animals treated with doses of up to 48 µCi of (211)At-labeled anti-CD20 mAb ([(211)At]1F5-B10) experienced modest responses (0% cures but two- to threefold prolongation of survival compared with negative controls). In contrast, 70% of animals in the MRD lymphoma model demonstrated complete eradication of disease when treated with (211)At-B10-1F5 at a radiation dose that was less than one-third (15 µCi) of the highest dose given to xenograft animals. Tumor progression among untreated control animals in both models was uniformly lethal. After 130 days, no significant renal or hepatic toxicity was observed in the cured animals receiving 15 µCi of [(211)At]1F5-B10. These findings suggest that α-emitters are highly efficacious in MRD settings, where isolated cells and small tumor clusters prevail.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antígenos CD20/imunologia , Astato/uso terapêutico , Imunoconjugados/uso terapêutico , Linfoma de Células B/radioterapia , Animais , Feminino , Humanos , Células Jurkat , Linfoma de Células B/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Radioimunoterapia , Resultado do Tratamento , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Cancer Res ; 74(4): 1179-89, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24371230

RESUMO

The vast majority of patients with plasma cell neoplasms die of progressive disease despite high response rates to novel agents. Malignant plasma cells are very radiosensitive, but the potential role of radioimmunotherapy (RIT) in the management of plasmacytomas and multiple myeloma has undergone only limited evaluation. Furthermore, CD38 has not been explored as a RIT target despite its uniform high expression on malignant plasma cells. In this report, both conventional RIT (directly radiolabeled antibody) and streptavidin-biotin pretargeted RIT (PRIT) directed against the CD38 antigen were assessed as approaches to deliver radiation doses sufficient for multiple myeloma cell eradication. PRIT demonstrated biodistributions that were markedly superior to conventional RIT. Tumor-to-blood ratios as high as 638:1 were seen 24 hours after PRIT, whereas ratios never exceeded 1:1 with conventional RIT. (90)Yttrium absorbed dose estimates demonstrated excellent target-to-normal organ ratios (6:1 for the kidney, lung, liver; 10:1 for the whole body). Objective remissions were observed within 7 days in 100% of the mice treated with doses ranging from 800 to 1,200 µCi of anti-CD38 pretargeted (90)Y-DOTA-biotin, including 100% complete remissions (no detectable tumor in treated mice compared with tumors that were 2,982% ± 2,834% of initial tumor volume in control animals) by day 23. Furthermore, 100% of animals bearing NCI-H929 multiple myeloma tumor xenografts treated with 800 µCi of anti-CD38 pretargeted (90)Y-DOTA-biotin achieved long-term myeloma-free survival (>70 days) compared with none (0%) of the control animals.


Assuntos
ADP-Ribosil Ciclase 1/imunologia , Anticorpos Monoclonais/uso terapêutico , Compostos Heterocíclicos/uso terapêutico , Terapia de Alvo Molecular/métodos , Neoplasias de Plasmócitos/radioterapia , Compostos Organometálicos/uso terapêutico , Radioimunoterapia/métodos , Animais , Células Cultivadas , Feminino , Humanos , Camundongos , Camundongos Nus , Camundongos Transgênicos , Ensaios Antitumorais Modelo de Xenoenxerto , Radioisótopos de Ítrio/uso terapêutico
9.
Blood ; 121(18): 3759-67, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-23471305

RESUMO

Despite aggressive chemotherapy combined with hematopoietic stem cell transplantation (HSCT), many patients with acute myeloid leukemia (AML) relapse. Radioimmunotherapy (RIT) using monoclonal antibodies labeled with ß-emitting radionuclides has been explored to reduce relapse. ß emitters are limited by lower energies and nonspecific cytotoxicity from longer path lengths compared with α emitters such as (211)At, which has a higher energy profile and shorter path length. We evaluated the efficacy and toxicity of anti-CD45 RIT using (211)At in a disseminated murine AML model. Biodistribution studies in leukemic SJL/J mice showed excellent localization of (211)At-anti-murine CD45 mAb (30F11) to marrow and spleen within 24 hours (18% and 79% injected dose per gram of tissue [ID/g], respectively), with lower kidney and lung uptake (8.4% and 14% ID/g, respectively). In syngeneic HSCT studies, (211)At-B10-30F11 RIT improved the median survival of leukemic mice in a dose-dependent fashion (123, 101, 61, and 37 days given 24, 20, 12, and 0 µCi, respectively). This approach had minimal toxicity with nadir white blood cell counts >2.7 K/µL 2 weeks after HSCT and recovery by 4 weeks. These data suggest that (211)At-anti-CD45 RIT in conjunction with HSCT may be a promising therapeutic option for AML.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Astato/uso terapêutico , Transplante de Medula Óssea , Leucemia/terapia , Antígenos Comuns de Leucócito/imunologia , Radioimunoterapia/métodos , Animais , Terapia Combinada/métodos , Modelos Animais de Doenças , Feminino , Leucemia/mortalidade , Leucemia/patologia , Leucemia/radioterapia , Camundongos , Metástase Neoplásica , Análise de Sobrevida , Distribuição Tecidual , Resultado do Tratamento , Células Tumorais Cultivadas
10.
Br J Haematol ; 161(2): 183-91, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23356514

RESUMO

Given the poor outcomes of relapsed aggressive lymphomas and preclinical data suggesting that ≥2·5 µmol/l concentrations of vorinostat synergize with both etoposide and platinums, we hypothesized that pulse high-dose vorinostat could safely augment the anti-tumour activity of (R)ICE [(rituximab), ifosphamide, carboplatin, etoposide] chemotherapy. We conducted a phase I dose escalation study using a schedule with oral vorinostat ranging from 400 mg/d to 700 mg bid for 5 d in combination with the standard (R)ICE regimen (days 3, 4 and 5). Twenty-nine patients [median age 56 years, median 2 prior therapies, 14 chemoresistant (of 27 evaluable), 2 prior transplants] were enrolled and treated. The maximally tolerated vorinostat dose was defined as 500 mg twice daily × 5 d. Common dose limiting toxicities included infection (n = 2), hypokalaemia (n = 2), and transaminitis (n = 2). Grade 3 related gastrointestinal toxicity was seen in 9 patients. The median vorinostat concentration on day 3 was 4·5 µmol/l (range 4·2-6·0 µmol/l) and in vitro data confirmed the augmented antitumour and histone acetylation activity at these levels. Responses were observed in 19 of 27 evaluable patients (70%) including 8 complete response/unconfirmed complete response. High-dose vorinostat can be delivered safely with (R)ICE, achieves potentially synergistic drug levels, and warrants further study, although adequate gastrointestinal prophylaxis is warranted.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Linfoma/tratamento farmacológico , Adulto , Idoso , Anticorpos Monoclonais Murinos/administração & dosagem , Anticorpos Monoclonais Murinos/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Carboplatina/administração & dosagem , Carboplatina/efeitos adversos , Sinergismo Farmacológico , Etoposídeo/administração & dosagem , Etoposídeo/efeitos adversos , Feminino , Humanos , Ácidos Hidroxâmicos/administração & dosagem , Ácidos Hidroxâmicos/efeitos adversos , Ifosfamida/administração & dosagem , Ifosfamida/efeitos adversos , Masculino , Pessoa de Meia-Idade , Rituximab , Vorinostat
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...