Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473978

RESUMO

Female breast cancer accounts for 15.2% of all new cancer cases in the United States, with a continuing increase in incidence despite efforts to discover new targeted therapies. With an approximate failure rate of 85% for therapies in the early phases of clinical trials, there is a need for more translatable, new preclinical in vitro models that include cellular heterogeneity, extracellular matrix, and human-derived biomaterials. Specifically, adipose tissue and its resident cell populations have been identified as necessary attributes for current preclinical models. Adipose-derived stromal/stem cells (ASCs) and mature adipocytes are a normal part of the breast tissue composition and not only contribute to normal breast physiology but also play a significant role in breast cancer pathophysiology. Given the recognized pro-tumorigenic role of adipocytes in tumor progression, there remains a need to enhance the complexity of current models and account for the contribution of the components that exist within the adipose stromal environment to breast tumorigenesis. This review article captures the current landscape of preclinical breast cancer models with a focus on breast cancer microphysiological system (MPS) models and their counterpart patient-derived xenograft (PDX) models to capture patient diversity as they relate to adipose tissue.


Assuntos
Neoplasias da Mama , Animais , Humanos , Feminino , Neoplasias da Mama/patologia , Tecido Adiposo/patologia , Adipócitos/patologia , Obesidade/patologia , Células Estromais/patologia , Modelos Animais de Doenças
2.
Adv Biol (Weinh) ; 7(8): e2200332, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37236203

RESUMO

Hydrogels are 3D scaffolds used as alternatives to in vivo models for disease modeling and delivery of cells and drugs. Existing hydrogel classifications include synthetic, recombinant, chemically defined, plant- or animal-based, and tissue-derived matrices. There is a need for materials that can support both human tissue modeling and clinically relevant applications requiring stiffness tunability. Human-derived hydrogels are not only clinically relevant, but they also minimize the use of animal models for pre-clinical studies. This study aims to characterize XGel, a new human-derived hydrogel as an alternative to current murine-derived and synthetic recombinant hydrogels that features unique physiochemical, biochemical, and biological properties that support adipocyte and bone differentiation. Rheology studies determine the viscosity, stiffness, and gelation features of XGel. Quantitative studies for quality control support consistency in the protein content between lots. Proteomics studies reveal that XGel is predominantly composed of extracellular matrix proteins, including fibrillin, collagens I-VI, and fibronectin. Electron microscopy of the hydrogel provides phenotypic characteristics in terms of porosity and fiber size. The hydrogel demonstrates biocompatibility as a coating material and as a 3D scaffold for the growth of multiple cell types. The results provide insight into the biological compatibility of this human-derived hydrogel for tissue engineering.


Assuntos
Hidrogéis , Células-Tronco , Engenharia Tecidual , Hidrogéis/química , Humanos , Matriz Extracelular , Proliferação de Células , Células-Tronco/citologia
3.
Front Bioeng Biotechnol ; 10: 893992, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845419

RESUMO

Articular cartilage is composed of chondrocytes surrounded by a porous permeable extracellular matrix. It has a limited spontaneous healing capability post-injury which, if left untreated, can result in severe osteochondral disease. Currently, osteochondral (OC) defects are treated by bone marrow stimulation, artificial joint replacement, or transplantation of bone, cartilage, and periosteum, while autologous osteochondral transplantation is also an option; it carries the risk of donor site damage and is limited only to the treatment of small defects. Allografts may be used for larger defects; however, they have the potential to elicit an immune response. A possible alternative solution to treat osteochondral diseases involves the use of stromal/stem cells. Human adipose-derived stromal/stem cells (ASCs) can differentiate into cartilage and bone cells. The ASC can be combined with both natural and synthetic scaffolds to support cell delivery, growth, proliferation, migration, and differentiation. Combinations of both types of scaffolds along with ASCs and/or growth factors have shown promising results for the treatment of OC defects based on in vitro and in vivo experiments. Indeed, these findings have translated to several active clinical trials testing the use of ASC-scaffold composites on human subjects. The current review critically examines the literature describing ASC-scaffold composites as a potential alternative to conventional therapies for OC tissue regeneration.

4.
Biomater Transl ; 2(4): 301-306, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35837416

RESUMO

Microphysiological systems (MPS) created with human-derived cells and biomaterial scaffolds offer a potential in vitro alternative to in vivo animal models. The adoption of three-dimensional MPS models has economic, ethical, regulatory, and scientific implications for the fields of regenerative medicine, metabolism/obesity, oncology, and pharmaceutical drug discovery. Key opinion leaders acknowledge that MPS tools are uniquely positioned to aid in the objective to reduce, refine, and eventually replace animal experimentation while improving the accuracy of the finding's clinical translation. Adipose tissue has proven to be an accessible and available source of human-derived stromal vascular fraction (SVF) cells, a heterogeneous population available at point of care, and adipose-derived stromal/stem cells, a relatively homogeneous population requiring plastic adherence and culture expansion of the SVF cells. The adipose-derived stromal/stem cells or SVF cells, in combination with human tissue or synthetic biomaterial scaffolds, can be maintained for extended culture periods as three-dimensional MPS models under angiogenic, stromal, adipogenic, or osteogenic conditions. This review highlights recent literature relating to the versatile use of adipose-derived cells as fundamental components of three-dimensional MPS models for discovery research and development. In this context, it compares the merits and limitations of the adipose-derived stromal/stem cells relative to SVF cell models and considers the likely directions that this emerging field of scientific discovery will take in the near future.

6.
Stem Cells ; 34(4): 1097-111, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26865460

RESUMO

Progenitors derived from the stromal vascular fraction (SVF) of white adipose tissue (WAT) possess the ability to form clonal populations and differentiate along multiple lineage pathways. However, the literature continues to vacillate between defining adipocyte progenitors as "stromal" or "stem" cells. Recent studies have demonstrated that a nonpericytic subpopulation of adipose stromal cells, which possess the phenotype, CD45(-) /CD31(-) /CD146(-) /CD34(+) , are mesenchymal, and suggest this may be an endogenous progenitor subpopulation within adipose tissue. We hypothesized that an adipose progenitor could be sorted based on the expression of CD146, CD34, and/or CD29 and when implanted in vivo these cells can persist, proliferate, and regenerate a functional fat pad over serial transplants. SVF cells and culture expanded adipose stromal/stem cells (ASC) ubiquitously expressing the green fluorescent protein transgene (GFP-Tg) were fractionated by flow cytometry. Both freshly isolated SVF and culture expanded ASC were seeded in three-dimensional silk scaffolds, implanted subcutaneously in wild-type hosts, and serially transplanted. Six-week WAT constructs were removed and evaluated for the presence of GFP-Tg adipocytes and stem cells. Flow cytometry, quantitative polymerase chain reaction, and confocal microscopy demonstrated GFP-Tg cell persistence, proliferation, and expansion, respectively. Glycerol secretion and glucose uptake assays revealed GFP-Tg adipose was metabolically functional. Constructs seeded with GFP-Tg SVF cells or GFP-Tg ASC exhibited higher SVF yields from digested tissue, and higher construct weights, compared to nonseeded controls. Constructs derived from CD146(-) CD34(+) -enriched GFP-Tg ASC populations exhibited higher hemoglobin saturation, and higher frequency of GFP-Tg cells than unsorted or CD29(+) GFP-Tg ASC counterparts. These data demonstrated successful serial transplantation of nonpericytic adipose-derived progenitors that can reconstitute adipose tissue as a solid organ. These findings have the potential to provide new insights regarding the stem cell identity of adipose progenitor cells.


Assuntos
Adipócitos/transplante , Tecido Adiposo Branco/crescimento & desenvolvimento , Diferenciação Celular/genética , Transplante de Células-Tronco Mesenquimais , Células Estromais/transplante , Adipócitos/citologia , Tecido Adiposo Branco/citologia , Animais , Linhagem da Célula/genética , Separação Celular , Citometria de Fluxo , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Medicina Regenerativa , Seda/química , Seda/uso terapêutico , Células Estromais/citologia , Alicerces Teciduais/química
7.
Plast Reconstr Surg Glob Open ; 3(3): e334, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25878945

RESUMO

BACKGROUND: As the world's population lives longer, the number of individuals at risk for pressure ulcers will increase considerably in the coming decades. In developed countries, up to 18% of nursing home residents suffer from pressure ulcers and the resulting hospital costs can account for up to 4% of a nation's health care budget. Although full-thickness surgical skin wounds have been used as a model, preclinical rodent studies have demonstrated that repeated cycles of ischemia and reperfusion created by exposure to magnets most closely mimic the human pressure ulcer condition. METHODS: This study uses in vivo and in vitro quantitative parameters to characterize the temporal kinetics and histology of pressure ulcers in young, female C57BL/6 mice exposed to 2 or 3 ischemia-reperfusion cycles. This pressure ulcer model was validated further in studies examining the efficacy of adipose-derived stromal/stem cell administration. RESULTS: Optimal results were obtained with the 2-cycle model based on the wound size, histology, and gene expression profile of representative angiogenic and reparative messenger RNAs. When treated with adipose-derived stromal/stem cells, pressure ulcer wounds displayed a dose-dependent and significant acceleration in wound closure rates and improved tissue histology. CONCLUSION: These findings document the utility of this simplified preclinical model for the evaluation of novel tissue engineering and medical approaches to treat pressure ulcers in humans.

8.
Stem Cells Transl Med ; 4(6): 632-42, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25900728

RESUMO

UNLABELLED: More than 2.5 million patients in the U.S. require treatment for pressure ulcers annually, and the elderly are at particularly high risk for pressure ulcer development. Current therapy for pressure ulcers consists of conservative medical management for shallow lesions and aggressive debridement and surgery for deeper lesions. The current study uses a murine model to address the hypothesis that adipose-derived stromal/stem cell (ASC) treatment would accelerate and enhance pressure ulcer repair. The dorsal skin of both young (2 months old [mo]) and old (20 mo) C57BL/6J female mice was sandwiched between external magnets for 12 hours over 2 consecutive days to initiate a pressure ulcer. One day following the induction, mice were injected with ASCs isolated from congenic mice transgenic for the green fluorescent protein under a ubiquitous promoter. Relative to phosphate-buffered saline-treated controls, ASC-treated mice displayed a cell concentration-dependent acceleration of wound closure, improved epidermal/dermal architecture, increased adipogenesis, and reduced inflammatory cell infiltration. The ASC-induced improvements occurred in both young and elderly recipients, although the expression profile of angiogenic, immunomodulatory, and reparative mRNAs differed as a function of age. The results are consistent with clinical reports that fat grafting improved skin architecture in thermal injuries; the authors of this published study have invoked ASC-based mechanisms to account for their clinical outcomes. Thus, the current proof-of-principle study sets the stage for clinical translation of autologous and/or allogeneic ASC treatment of pressure ulcers. SIGNIFICANCE: Adipose-derived stromal/stem cells (ASCs) promote the healing of pressure ulcer wounds in both young and old mice. ASCs enhance wound healing rates through adipogenic differentiation and regeneration of the underlying architecture of the skin.


Assuntos
Adipogenia , Tecido Adiposo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Úlcera por Pressão/terapia , Pele/metabolismo , Aloenxertos , Animais , Autoenxertos , Camundongos , Úlcera por Pressão/patologia , Pele/patologia
9.
PLoS One ; 9(2): e89595, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586900

RESUMO

BACKGROUND: Fat grafting is used to restore breast defects after surgical resection of breast tumors. Supplementing fat grafts with adipose tissue-derived stromal/stem cells (ASCs) is proposed to improve the regenerative/restorative ability of the graft and retention. However, long term safety for ASC grafting in proximity of residual breast cancer cells is unknown. The objective of this study was to determine the impact of human ASCs derived from abdominal lipoaspirates of three donors, on a human breast cancer model that exhibits early metastasis. METHODOLOGY/PRINCIPAL FINDINGS: Human MDA-MB-231 breast cancer cells represents "triple negative" breast cancer that exhibits early micrometastasis to multiple mouse organs [1]. Human ASCs were derived from abdominal adipose tissue from three healthy female donors. Indirect co-culture of MDA-MB-231 cells with ASCs, as well as direct co-culture demonstrated that ASCs had no effect on MDA-MB-231 growth. Indirect co-culture, and ASC conditioned medium (CM) stimulated migration of MDA-MB-231 cells. ASC/RFP cells from two donors co-injected with MDA-MB-231/GFP cells exhibited a donor effect for stimulation of primary tumor xenografts. Both ASC donors stimulated metastasis. ASC/RFP cells were viable, and integrated with MDA-MB-231/GFP cells in the tumor. Tumors from the co-injection group of one ASC donor exhibited elevated vimentin, matrix metalloproteinase-9 (MMP-9), IL-8, VEGF and microvessel density. The co-injection group exhibited visible metastases to the lung/liver and enlarged spleen not evident in mice injected with MDA-MB-231/GFP alone. Quantitation of the total area of GFP fluorescence and human chromosome 17 DNA in mouse organs, H&E stained paraffin sections and fluorescent microscopy confirmed multi-focal metastases to lung/liver/spleen in the co-injection group without evidence of ASC/RFP cells. CONCLUSIONS: Human ASCs derived from abdominal lipoaspirates of two donors stimulated metastasis of MDA-MB-231 breast tumor xenografts to multiple mouse organs. MDA-MB-231 tumors co-injected with ASCs from one donor exhibited partial EMT, expression of MMP-9, and increased angiogenesis.


Assuntos
Tecido Adiposo/citologia , Células-Tronco/fisiologia , Células Estromais/fisiologia , Neoplasias de Mama Triplo Negativas/patologia , Animais , Meios de Cultivo Condicionados , Feminino , Humanos , Interleucina-8/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
Stem Cells Dev ; 23(9): 968-77, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24405386

RESUMO

Human adipose tissue stromal/stem cells (ASCs) are known to induce proliferation of resting T cells under ambient (21%) O2 conditions; however, ASCs exist physiologically under lower oxygen (5% O2) conditions in adipose tissue. The effects of low oxygen levels on ASC immunomodulation of T cells are unknown. In this study, we show that ASCs stimulated proliferation of naive CD4(+) T cells and the percentage of CD25(+) T cells was significantly increased under both low and ambient O2. Forkhead box P3 (FoxP3) and transforming growth factor beta (TGF-ß) mRNA expression were significantly increased when ASCs were cocultured with CD4(+) T cells under low compared with ambient O2 conditions. The low O2-induced regulatory T cells (iTregs) exhibited functionality when added to mixed lymphocyte reactions as demonstrated by inhibition of peripheral blood mononuclear cell proliferation, and by >300-fold increase in FoxP3 mRNA, and >2-fold increase in TGF-ß mRNA expression. These results demonstrate that under physiologically relevant low O2 conditions, direct contact of human ASCs with naive CD4(+) T cells induced functional iTregs.


Assuntos
Tecido Adiposo/imunologia , Proliferação de Células , Células-Tronco Mesenquimais/imunologia , Linfócitos T Reguladores/imunologia , Tecido Adiposo/citologia , Adulto , Antígenos CD4/imunologia , Hipóxia Celular/imunologia , Feminino , Fatores de Transcrição Forkhead/imunologia , Humanos , Subunidade alfa de Receptor de Interleucina-2/imunologia , Subunidade alfa de Receptor de Interleucina-7/imunologia , Células-Tronco Mesenquimais/citologia , Linfócitos T Reguladores/citologia
11.
BMC Cell Biol ; 14: 34, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23924189

RESUMO

BACKGROUND: Obesity is associated with a higher risk of developing cancer and co-morbidities that are part of the metabolic syndrome. Adipose tissue is recognized as an endocrine organ, as it affects a number of physiological functions, and contains adipose tissue-derived stem cells (ASCs). ASCs can differentiate into cells of multiple lineages, and as such are applicable to tissue engineering and regenerative medicine. Yet the question of whether ASC functionality is affected by the donor's body mass index (BMI) still exists. RESULTS: ASCs were isolated from patients having different BMIs (BMI-ASCs), within the ranges of 18.5-32.8. It was hypothesized that overweight BMI-ASCs would be more compromised in early adipogenic and osteogenic potential, and ability to form colonies in vitro. BMI was inversely correlated with ASC proliferation and colony forming potential as assessed by CyQUANT proliferation assay (fluorescence- based measurement of cellular DNA content), and colony forming assays. BMI was positively correlated with early time point (day 7) but not later time point (day 15) intracytoplasmic lipid accumulation as assessed by Oil-Red-O staining. Alizarin red staining and RT-PCR for alkaline phosphatase demonstrated that elevated BMI resulted in compromised ASC mineralization of extracellular matrix and decreased alkaline phosphatase mRNA expression. CONCLUSIONS: These data demonstrate that elevated BMI resulted in reduced ASC proliferation, and potentially compromised osteogenic capacity in vitro; thus BMI is an important criterion to consider in selecting ASC donors for clinical applications.


Assuntos
Células-Tronco Adultas/citologia , Índice de Massa Corporal , Diferenciação Celular/fisiologia , Proliferação de Células , Osteogênese/fisiologia , Gordura Subcutânea/citologia , Adulto , Células-Tronco Adultas/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Meios de Cultura/farmacologia , Feminino , Humanos , Técnicas In Vitro , Pessoa de Meia-Idade , Obesidade/patologia , Osteogênese/efeitos dos fármacos , Sobrepeso/patologia , Gordura Subcutânea/efeitos dos fármacos
12.
Biochimie ; 95(12): 2286-96, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23880643

RESUMO

Tissue fibrosis can lead to organ dysfunction, patient morbidity, and mortality. Adipose-derived Stromal/stem Cells (ASCs) represent a potential therapeutic. Immediately following grafting, ASCs would reside in a lower O2 environment. ASC secretome was examined under 5% O2 ("low O2") and 21% O2 ("ambient O2") culture conditions. ASCs from five female donors were cultured in low or ambient O2 conditions for 3 days and pooled conditioned medium was compared by two-dimensional liquid chromatography and tandem mass spectrometry (2D-LC-MS/MS). Of 71 proteins identified, five proteins involved in extracellular matrix (ECM) remodeling exhibited ≥2-fold decrease under low O2 culture and were confirmed by Western immunoblot and qRT-PCR: fibronectin 1, TGF-ß1-induced protein (ßig-h3), osteonectin, and collagens type 1α1 and α2. ELISAs performed using 10 donors also confirmed significant decreases during low O2 culture in 4-6 ASC donors. For low abundant proteins, a 36 cytokine/chemokine array was performed. Fifteen cytokines/chemokines including Type 2 cytokines IL-13, MCP-1, and CD40 ligand were detected in ambient O2 ASC medium. IL-6 was detected in low O2 but not ambient O2 ASC medium. These findings demonstrate that low O2 ASC exposure resulted in reduced ECM protein and Type 2 cytokine secretions that are significant with regard to inflammation in fibrosis.


Assuntos
Adipócitos/metabolismo , Oxigênio/administração & dosagem , Células-Tronco/metabolismo , Tecido Adiposo/citologia , Adulto , Células Cultivadas , Meios de Cultivo Condicionados/metabolismo , Citocinas/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Feminino , Fibrose/etiologia , Humanos , Interleucina-6/metabolismo , Pessoa de Meia-Idade , Proteoma/metabolismo , Espectrometria de Massas em Tandem
13.
Stem Cells Dev ; 19(1): 83-92, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19400629

RESUMO

Ear mesenchymal stem cells (EMSCs) represent a readily accessible population of stem-like cells that are adherent, clonogenic, and have the ability to self-renew. Previously, we have demonstrated that they can be induced to differentiate into adipocyte, osteocyte, chondrocyte, and myocyte lineages. The purpose of the current study was to characterize the growth kinetics of the cells and to determine their ability to form colonies of fibroblasts, adipocytes, osteocytes, and chondrocytes. In addition, the immunophenotypes of freshly isolated and culture-expanded cells were evaluated. From 1 g of tissue, we were able to isolate an average of 7.8 x 10(6) cells exhibiting a cell cycle length of approximately 2-3 days. Colony-forming unit (CFU) assays indicated high proliferation potential, and confirmed previously observed multipotentiality of the cells. Fluorescence-activated cell sorting (FACS) showed that EMSCs were negative for hematopoietic markers (CD4, CD45), proving that they did not derive from circulating hematopoietic cells. The FACS analyses also showed high expression of stem cell antigen-1 (Sca-1) with only a minor population of cells expressing CD117, thus identifying Sca-1 as the more robust stem cell biomarker. Additionally, flow cytometry data revealed that the expression patterns of hematopoietic, stromal, and stem cell markers were maintained in the passaged EMSCs, consistent with the persistence of an undifferentiated state. This study indicates that EMSCs provide an alternative model for in vitro analyses of adult mesenchymal stem cells (MSCs). Further studies will be necessary to determine their utility for tissue engineering and regenerative medical applications.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células , Orelha , Imunofenotipagem , Células-Tronco Mesenquimais/fisiologia , Células-Tronco Adultas/metabolismo , Células-Tronco Adultas/fisiologia , Fatores Etários , Animais , Biomarcadores/metabolismo , Movimento Celular , Ensaio de Unidades Formadoras de Colônias , Orelha/fisiologia , Eficiência , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA