Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(14)2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37508492

RESUMO

Objectives: The optimal healing of skin wounds, deep burns, and chronic ulcers is an important clinical problem. Attempts to solve it have been driving the search for skin equivalents based on synthetic or natural polymers. Methods: Consistent with this endeavor, we used regenerated silk fibroin (SF) from Bombyx mori to produce a novel compound scaffold by welding a 3D carded/hydroentangled SF-microfiber-based nonwoven layer (C/H-3D-SFnw; to support dermis engineering) to an electrospun 2D SF nanofiber layer (ESFN; a basal lamina surrogate). Next, we assessed-via scanning electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy, differential scanning calorimetry, mono- and co-cultures of HaCaT keratinocytes and adult human dermal fibroblasts (HDFs), dsDNA assays, exosome isolation, double-antibody arrays, and angiogenesis assays-whether the C/H-3D-SFnws/ESFNs would allow the reconstitution of a functional human skin analog in vitro. Results: Physical analyses proved that the C/H-3D-SFnws/ESFNs met the requirements for human soft-tissue-like implants. dsDNA assays revealed that co-cultures of HaCaTs (on the 2D ESFN surface) and HDFs (inside the 3D C/H-3D-SFnws) grew more intensely than did the respective monocultures. Double-antibody arrays showed that the CD9+/CD81+ exosomes isolated from the 14-day pooled growth media of HDF and/or HaCaT mono- or co-cultures conveyed 35 distinct angiogenic/growth factors (AGFs). However, versus monocultures' exosomes, HaCaT/HDF co-cultures' exosomes (i) transported larger amounts of 15 AGFs, i.e., PIGF, ANGPT-1, bFGF, Tie-2, Angiogenin, VEGF-A, VEGF-D, TIMP-1/-2, GRO-α/-ß/-γ, IL-1ß, IL-6, IL-8, MMP-9, and MCP-1, and (ii) significantly more strongly stimulated human dermal microvascular endothelial cells to migrate and assemble tubes/nodes in vitro. Conclusions: Our results showed that both cell-cell and cell-SF interactions boosted the exosomal release of AGFs from HaCaTs/HDFs co-cultured on C/H-3D-SFnws/ESFNs. Hence, such exosomes are an asset for prospective clinical applications as they advance cell growth and neoangiogenesis and consequently graft take and skin healing. Moreover, this new integument analog could be instrumental in preclinical and translational studies on human skin pathophysiology and regeneration.


Assuntos
Fibroínas , Feminino , Humanos , Fibroínas/farmacologia , Fibroínas/química , Técnicas de Cocultura , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Células Endoteliais , Estudos Prospectivos , Fator de Crescimento Placentário/metabolismo , Queratinócitos/fisiologia , Fibroblastos/metabolismo
2.
Front Surg ; 10: 1090565, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304180

RESUMO

Autologous vein and artery remains the first choice for vascular grafting procedures in small-diameter vessels such as coronary and lower limb districts. Unfortunately, these vessels are often found to be unsuitable in atherosclerotic patients due to the presence of calcifications or to insufficient size. Synthetic grafts composed of materials such as expanded polytetrafluoroethylene (ePTFE) are frequently employed as second choice, because of their widespread availability and success in the reconstruction of larger arteries. However, ePTFE grafts with small diameter are plagued by poor patency rates due to surface thrombogenicity and intimal hyperplasia, caused by the bioinertness of the synthetic material and aggravated by low flow conditions. Several bioresorbable and biodegradable polymers have been developed and tested to exploit such issues for their potential stimulation to endothelialization and cell infiltration. Among these, silk fibroin (SF) has shown promising pre-clinical results as material for small-diameter vascular grafts (SDVGs) because of its favorable mechanical and biological properties. A putative advantage in graft infection in comparison with synthetic materials is plausible, although it remains to be demonstrated. Our literature review will focus on the performance of SF-SDVGs in vivo, as evaluated by studies performing vascular anastomosis and interposition procedures, within small and large animal models and different arterial districts. Efficiency under conditions that more accurately mime the human body will provide encouraging evidence towards future clinical applications.

3.
Nanomaterials (Basel) ; 12(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36144970

RESUMO

The development of innovative osteoconductive matrices, which are enriched with antibiotic delivery nanosystems, has the invaluable potential to achieve both local contaminant eradication and the osseointegration of implanted devices. With the aim of producing safe, bioactive materials that have osteoconductive and antibacterial properties, novel, antibiotic-loaded, functionalized nanoparticles (AFN)-based on carboxylic acid functionalized hyperbranched aliphatic polyester (CHAP) that can be integrated into peptide-enriched silk fibroin (PSF) matrices with osteoconductive properties-were successfully synthesized. The obtained AFNPSF sponges were first physico-chemically characterized and then tested in vitro against eukaryotic cells and bacteria involved in orthopedic or oral infections. The biocompatibility and microbiological tests confirmed the promising characteristics of the AFN-PSF products for both orthopedic and dental applications. These preliminary results encourage the establishment of AFN-PSF-based preventative strategies in the fight against implant-related infections.

4.
Materials (Basel) ; 15(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35629761

RESUMO

As the incidence of cardiovascular diseases has been growing in recent years, the need for small-diameter vascular grafts is increasing. Considering the limited success of synthetic grafts, vascular tissue engineering/repair/regeneration aim to find novel solutions. Silk fibroin (SF) has been widely investigated for the development of vascular grafts, due to its good biocompatibility, tailorable biodegradability, excellent mechanical properties, and minimal inflammatory reactions. In this study, a new generation of three-layered SF vascular scaffolds has been produced and optimized. Four designs of the SILKGraft vascular prosthesis have been developed with the aim of improving kink resistance and mechanical strength, without compromising the compliance with native vessels and the proven biocompatibility. A more compact arrangement of the textile layer allowed for the increase in the mechanical properties along the longitudinal and circumferential directions and the improvement of the compliance value, which approached that reported for the saphenous and umbilical veins. The higher braid density slightly affected the grafts' morphology, increasing surface roughness, but the novel design mimicked the corrugation approach used for synthetic grafts, causing significant improvements in kink resistance.

5.
Insects ; 13(2)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35206785

RESUMO

The medical device is a nerve conduit entirely made of Bombyx mori silk fibroin. It is a tubular scaffold used for repairing peripheral nerve gaps, whose function is to protect the severed nerves and to favor their natural healing process. As any implantable medical device, the conduit must perform its function without causing adverse effects to the patient, meaning that it must be compliant with a range of regulations aimed at evaluating the risks related to the constituent materials and the manufacturing process, the toxicological impact of the processing aids, the biological safety, the functional performance, and the ability to sustain tissue regeneration processes. An exhaustive on-bench testing plan has been performed for the determination of the morphological, geometrical, physical, structural, and mechanical properties. For the toxicological analysis, the device was extracted with solvent and the number of leachable substances was determined by suitable chromatographic techniques. The biological safety was assessed by means of a set of tests, including cytotoxicity, delayed hypersensitivity, intracutaneous reactivity, pyrogen test, LAL (Limulus Amebocyte Lysate) test, acute systemic toxicity, and genotoxicity. Overall, the accumulated results demonstrated the suitability of the device for the intended use and supported the starting of a first-in-human clinical trial.

6.
Front Bioeng Biotechnol ; 10: 833157, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35155396

RESUMO

The dissolution of Bombyx mori silk fibroin (SF) films in formic acid (FA) for the preparation of electrospinning dopes is widely exploited to produce electrospun SF scaffolds. The SILKBridge® nerve conduit is an example of medical device having in its wall structure an electrospun component produced from an FA spinning dope. Though highly volatile, residual FA remains trapped into the bulk of the SF nanofibers. The purpose of this work is to investigate the type and strength of the interaction between FA and SF in electrospun mats, to quantify its amount and to evaluate its possible toxicological impact on human health. The presence of residual FA in SF mats was detected by FTIR and Raman spectroscopy (new carbonyl peak at about 1,725 cm-1) and by solid state NMR, which revealed a new carbonyl signal at about 164.3 ppm, attributed to FA by isotopic 13C substitution. Changes occurred also in the spectral ranges of hydroxylated amino acids (Ser and Thr), demonstrating that FA interacted with SF by forming formyl esters. The total amount of FA was determined by HS-GC/MS analysis and accounted for 247 ± 20 µmol/g. The greatest part was present as formyl ester, a small part (about 3%) as free FA. Approximately 17% of the 1,500 µmol/g of hydroxy amino acids (Ser and Thr) theoretically available were involved in the formation of formyl esters. Treatment with alkali (Na2CO3) succeeded to remove the greatest part of FA, but not all. Alkali-treated electrospun SF mats underwent morphological, physical, and mechanical changes. The average diameter of the fibers increased from about 440 nm to about 480 nm, the mat shrunk, became stiffer (the modulus increased from about 5.5 MPa to about 7 MPa), and lost elasticity (the strain decreased from about 1 mm/mm to about 0.8 mm/mm). Biocompatibility studies with human adult dermal fibroblasts did not show significant difference in cell proliferation (313 ± 18 and 309 ± 23 cells/mm2 for untreated and alkali-treated SF mat, respectively) and metabolic activity. An in-depth evaluation of the possible toxicological impact of residual FA was made using the SILKBridge® nerve conduit as case study, following the provisions of the ISO 10993-1 standard. The Potential Patient Daily Intake, calculated from the total amount of FA determined by HS-GC/MS, was 2.4 mg/day and the Tolerable Exposure level was set to 35.4 mg/day. This allowed to obtain a value of the Margin of Safety of 15, indicating that the amount of FA left on SF mats after electrospinning does not raise concerns for human health.

8.
Burns Trauma ; 9: tkab003, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34212056

RESUMO

BACKGROUND: Bombyx mori silk fibroin is a biomacromolecule that allows the assembly of scaffolds for tissue engineering and regeneration purposes due to its cellular adhesiveness, high biocompatibility and low immunogenicity. Earlier work showed that two types of 3D silk fibroin nonwovens (3D-SFnws) implanted into mouse subcutaneous tissue were promptly vascularized via undefined molecular mechanisms. The present study used nontumorigenic adult human dermal fibroblasts (HDFs) adhering to a third type of 3D-SFnws to assess whether HDFs release exosomes whose contents promote neoangiogenesis. METHODS: Electron microscopy imaging and physical tests defined the features of the novel carded/hydroentangled 3D-SFnws. HDFs were cultured on 3D-SFnws and polystyrene plates in an exosome-depleted medium. DNA amounts and D-glucose consumption revealed the growth and metabolic activities of HDFs on 3D-SFnws. CD9-expressing total exosome fractions were from conditioned media of 3D-SFnws and 2D polystyrene plates HDF cultures. Angiogenic growth factors (AGFs) in equal amounts of the two groups of exosomal proteins were analysed via double-antibody arrays. A tube formation assay using human dermal microvascular endothelial cells (HDMVECs) was used to evaluate the exosomes' angiogenic power. RESULTS: The novel features of the 3D-SFnws met the biomechanical requirements typical of human soft tissues. By experimental day 15, 3D-SFnws-adhering HDFs had increased 4.5-fold in numbers and metabolized 5.4-fold more D-glucose than at day 3 in vitro. Compared to polystyrene-stuck HDFs, exosomes from 3D-SFnws-adhering HDFs carried significantly higher amounts of AGFs, such as interleukin (IL)-1α, IL-4 and IL-8; angiopoietin-1 and angiopoietin-2; angiopoietin-1 receptor (or Tie-2); growth-regulated oncogene (GRO)-α, GRO-ß and GRO-γ; matrix metalloproteinase-1; tissue inhibitor metalloproteinase-1; and urokinase-type plasminogen activator surface receptor, but lesser amounts of anti-angiogenic tissue inhibitor metalloproteinase-2 and pro-inflammatory monocyte chemoattractant protein-1. At concentrations from 0.62 to 10 µg/ml, the exosomes from 3D-SFnws-cultured HDFs proved their angiogenic power by inducing HDMVECs to form significant amounts of tubes in vitro. CONCLUSIONS: The structural and mechanical properties of carded/hydroentangled 3D-SFnws proved their suitability for tissue engineering and regeneration applications. Consistent with our hypothesis, 3D-SFnws-adhering HDFs released exosomes carrying several AGFs that induced HDMVECs to promptly assemble vascular tubes in vitro. Hence, we posit that once implanted in vivo, the 3D-SFnws/HDFs interactions could promote the vascularization and repair of extended skin wounds due to burns or other noxious agents in human and veterinary clinical settings.

9.
Front Bioeng Biotechnol ; 8: 563203, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195126

RESUMO

Osteoarthritis frequently requires arthroplasty. Cementless implants are widely used in clinics to replace damaged cartilage or missing bone tissue. In cementless arthroplasty, the risk of aseptic loosening strictly depends on implant stability and bone-implant interface, which are fundamental to guarantee the long-term success of the implant. Ameliorating the features of prosthetic materials, including their porosity and/or geometry, and identifying osteoconductive and/or osteoinductive coatings of implant surfaces are the main strategies to enhance the bone-implant contact surface area. Herein, the development of a novel composite consisting in the association of macro-porous trabecular titanium with silk fibroin (SF) sponges enriched with anionic fibroin-derived polypeptides is described. This composite is applied to improve early bone ingrowth into the implant mesh in a sheep model of bone defects. The composite enables to nucleate carbonated hydroxyapatite and accelerates the osteoblastic differentiation of resident cells, inducing an outward bone growth, a feature that can be particularly relevant when applying these implants in the case of poor osseointegration. Moreover, the osteoconductive properties of peptide-enriched SF sponges support an inward bone deposition from the native bone towards the implants. This technology can be exploited to improve the biological functionality of various prosthetic materials in terms of early bone fixation and prevention of aseptic loosening in prosthetic surgery.

10.
Artigo em Inglês | MEDLINE | ID: mdl-32850714

RESUMO

Silk fibroin (Bombyx mori) was used to manufacture a nerve conduit (SilkBridgeTM) characterized by a novel 3D architecture. The wall of the conduit consists of two electrospun layers (inner and outer) and one textile layer (middle), perfectly integrated at the structural and functional level. The manufacturing technology conferred high compression strength on the device, thus meeting clinical requirements for physiological and pathological compressive stresses. As demonstrated in a previous work, the silk material has proven to be able to provide a valid substrate for cells to grow on, differentiate and start the fundamental cellular regenerative activities in vitro and, in vivo, at the short time point of 2 weeks, to allow the starting of regenerative processes in terms of good integration with the surrounding tissues and colonization of the wall layers and of the lumen with several cell types. In the present study, a 10 mm long gap in the median nerve was repaired with 12 mm SilkBridgeTM conduit and evaluated at middle (4 weeks) and at longer time points (12 and 24 weeks). The SilkBridgeTM conduit led to a very good functional and morphological recovery of the median nerve, similar to that observed with the reference autograft nerve reconstruction procedure. Taken together, all these results demonstrated that SilkBridgeTM has an optimized balance of biomechanical and biological properties, which allowed proceeding with a first-in-human clinical study aimed at evaluating safety and effectiveness of using the device for the reconstruction of digital nerve defects in humans.

12.
ACS Appl Bio Mater ; 3(12): 8361-8374, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35019608

RESUMO

The in vitro degradation profile and the cytotoxicity of the degradation products of a silk fibroin (SF)-based nerve conduit (SilkBridge), with a complex three-layered wall architecture comprising both native and regenerated (electrospun) fibers, are reported. The bacterial protease type XIV from Streptomyces griseus was used as a hydrolytic agent at three different enzyme/substrate ratios (1:8, 1:80, and 1:800 w/w) to account for the different susceptibility to degradation of the native and regenerated components. The incubation time was extended up to 91 days. At fixed time points, the remaining device, the insoluble debris, and the incubation buffers containing soluble degradation products were separated and analyzed. The electrospun fibers forming the inner and outer layers of the conduit wall were almost completely degraded within 10 days of incubation at an enzyme/substrate ratio of 1:80 w/w. The progression of degradation was highlighted by the emergence of zones of erosion and discontinuity along the electrospun fibers, weakening of the electrospun layers, and decrease in resistance to compressive stress. Native SF microfibers forming the middle layer of the conduit wall displayed a higher resistance to enzymatic degradation. When incubated at an enzyme/substrate ratio of 1:8 w/w, the weight decreased gradually over the incubation time as a consequence of fiber erosion and fragmentation. Analogously, the tensile properties markedly decreased. Both spectroscopic and thermal analyses confirmed the gradual increase in the crystalline character of the fibers. The incubation buffers containing the soluble degradation products were subjected to cytotoxicity testing with human HEK293 cells and mouse neuroblastoma N2a cells. No detrimental effects on cell viability were observed, suggesting that the degradation products do not retain any toxic property. Finally, the mass spectrometry analysis of degradation products showed that the SF polypeptides recovered in the incubation buffers were representative of the aminoacidic sequence of the fibroin light chain and of the highly repetitive fibroin heavy chain, indicating that virtually the entire sequence of the fibroin protein constituent of SilkBridge was degraded.

13.
Artigo em Inglês | MEDLINE | ID: mdl-31850325

RESUMO

Silk fibroin (SF) is an eligible biomaterial for the development of small caliber vascular grafts for substitution, repair, and regeneration of blood vessels. This study presents the properties of a newly designed multi-layered SF tubular scaffold for vascular grafting (SilkGraf). The wall architecture consists of two electrospun layers (inner and outer) and an intermediate textile layer. The latter was designed to confer high mechanical performance and resistance on the device, while electrospun layers allow enhancing its biomimicry properties and host's tissues integration. In vitro cell interaction studies performed with adult Human Coronary Artery Endothelial Cells (HCAECs), Human Aortic Smooth Muscle Cells (HASMCs), and Human Aortic Adventitial Fibroblasts (HAAFs) demonstrated that the electrospun layers favor cell adhesion, survival, and growth. Once cultured in vitro on the SF scaffold the three cell types showed an active metabolism (consumption of glucose and glutamine, release of lactate), and proliferation for up to 20 days. HAAF cells grown on SF showed a significantly lower synthesis of type I procollagen than on polystyrene, meaning a lower fibrotic effect of the SF substrate. The cytokine and chemokine expression patterns were investigated to evaluate the cells' proliferative and pro-inflammatory attitude. Interestingly, no significant amounts of truly pro-inflammatory cytokines were secreted by any of the three cell types which exhibited a clearly proliferative profile. Good hemocompatibility was observed by complement activation, hemolysis, and hematology assays. Finally, the results of an in vivo preliminary pilot trial on minipig and sheep to assess the functional behavior of implanted SF-based vascular graft identified the sheep as the more apt animal model for next medium-to-long term preclinical trials.

14.
Biomed Mater ; 14(1): 015006, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30412470

RESUMO

While silk fibroin (SF)-based fibrous matrices are often considered as templates to mimic the native biomineralization process, their limited ability to induce apatite deposition hinders their potential applications in bone tissue engineering. In this study, it was hypothesized that the incorporation of anionic fibroin derived polypeptides (Cs), generated through the α-chymotrypsin digestion of SF, into SF would induce apatite deposition. The effect of Cs incorporation and content on the mineralization of fibrous, electrospun (ES) SF matrices, was assessed in simulated body fluid (SBF). Moreover, the potential role of Cs in mediating the proliferation and osteoblastic differentiation of seeded mesenchymal stem cells (MSCs), in vitro, was also investigated. Methylene blue staining indicated that the ES SF matrices became increasingly negatively charged with an increase in Cs content. Furthermore, the mechanical properties of the ES SF matrices were modulated through variations in Cs content. Their subsequent immersion in SBF demonstrated rapid mineralization, attributable to the carboxyl groups provided by the negatively charged Cs polypeptides, which served as nucleation sites for apatite deposition. Seeded MSCs attached on all scaffold types with differences observed in metabolic activities when cultured in osteogenic medium. Relative to basal medium, there was an up-regulation of alkaline phosphatase, runt related transcription factor 2 and osteocalcin in osteogenic medium (at days 14 and 21). Cell-induced mineralized matrix deposition appeared to be accelerated on Cs incorporated ES SF suggesting an osteoinductive potential of these polypeptides. In sum, the ability to incorporate Cs into SF scaffolds offers promise in bone tissue engineering applications.


Assuntos
Fibroínas/química , Osteogênese/efeitos dos fármacos , Peptídeos/química , Engenharia Tecidual/instrumentação , Fosfatase Alcalina/metabolismo , Animais , Bombyx , Osso e Ossos/metabolismo , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quitosana/química , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Perfilação da Expressão Gênica , Células-Tronco Mesenquimais , Camundongos , Camundongos Endogâmicos C57BL , Nanofibras/química , Osteocalcina/metabolismo , Resistência à Tração , Engenharia Tecidual/métodos , Alicerces Teciduais/química
15.
Transgenic Res ; 27(1): 87-101, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29435708

RESUMO

The domesticated silkworm, Bombyx mori, is a fundamental insect for silk industry. Silk is obtained from cocoons, protective envelopes produced during pupation and composed of single raw silk filaments secreted by the insect silk glands. Currently, silk is used as a textile fibre and to produce new materials for technical and biomedical applications. To enhance the use of both fabrics and silk-based materials, great efforts to obtain silk with antimicrobial properties have been made. In particular, a convincing approach is represented by the enrichment of the textile fibre with antimicrobial peptides, the main effectors of the innate immunity. To this aim, silkworm-based transgenic techniques appear to be cost-effective strategies to obtain cocoons in which antimicrobial peptides are integrated among the silk proteins. Recently, cocoons transgenic for a recombinant silk protein conjugated to the silkworm Cecropin B antimicrobial peptide were obtained and showed enhanced antibacterial properties (Li et al. in Mol Biol Rep 42:19-25, https://doi.org/10.1007/s11033-014-3735-z , 2015a). In this work we used the piggyBac-mediated germline transformation to generate several transgenic B. mori lines able to overexpress Cecropin B or Moricin antimicrobial peptides at the level of the silk gland. The derived cocoons were characterised by increased antimicrobial properties and the resulting silk fibre was able to inhibit the bacterial growth of the Gram-negative Escherichia coli. Our results suggest that the generation of silkworm overexpressing unconjugated antimicrobial peptides in the silk gland might represent an additional strategy to obtain antimicrobial peptide-enriched silk, for the production of new silk-based materials.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Bombyx/fisiologia , Proteínas de Insetos/genética , Seda/farmacologia , Seda/fisiologia , Animais , Animais Geneticamente Modificados , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Bombyx/genética , Escherichia coli/efeitos dos fármacos , Regulação da Expressão Gênica , Proteínas de Insetos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia
16.
Nat Mater ; 16(6): 681-689, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28250420

RESUMO

The degeneration of photoreceptors in the retina is one of the major causes of adult blindness in humans. Unfortunately, no effective clinical treatments exist for the majority of retinal degenerative disorders. Here we report on the fabrication and functional validation of a fully organic prosthesis for long-term in vivo subretinal implantation in the eye of Royal College of Surgeons rats, a widely recognized model of retinitis pigmentosa. Electrophysiological and behavioural analyses reveal a prosthesis-dependent recovery of light sensitivity and visual acuity that persists up to 6-10 months after surgery. The rescue of the visual function is accompanied by an increase in the basal metabolic activity of the primary visual cortex, as demonstrated by positron emission tomography imaging. Our results highlight the possibility of developing a new generation of fully organic, highly biocompatible and functionally autonomous photovoltaic prostheses for subretinal implants to treat degenerative blindness.


Assuntos
Cegueira/fisiopatologia , Cegueira/terapia , Compostos Orgânicos , Recuperação de Função Fisiológica , Visão Ocular , Próteses Visuais , Animais , Modelos Animais de Doenças , Ratos
17.
J Tissue Eng Regen Med ; 11(7): 2046-2059, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-26549403

RESUMO

Type I collagen is a major structural and functional protein in connective tissues. However, collagen gels exhibit unstable geometrical properties, arising from extensive cell-mediated contraction. In an effort to stabilize collagen-based hydrogels, plastic compression was used to hybridize dense collagen (DC) with electrospun silk fibroin (SF) mats, generating multilayered DC-SF-DC constructs. Seeded mesenchymal stem cell (MSC)-mediated DC-SF-DC contraction, as well as growth and differentiation under chondrogenic and osteogenic supplements, were compared to those seeded in DC and on SF alone. The incorporation of SF within DC prevented extensive cell-mediated collagen gel contraction. The effect of the multilayered hybrid on MSC remodelling capacity was also evident at the transcription level, where the expression of matrix metalloproteinases and their inhibitor (MMP1, MMP2, MMP3, MMP13 and Timp1) by MSCs within DC-SF-DC were comparable to those on SF and significantly downregulated in comparison to DC, except for Timp1. Chondrogenic supplements stimulated extracellular matrix production within the construct, stabilizing its multilayered structure and promoting MSC chondrogenic differentiation, as indicated by the upregulation of the genes Col2a1 and Agg and the production of collagen type II. In osteogenic medium there was an upregulation in ALP and OP along with the presence of an apatitic phase, indicating MSC osteoblastic differentiation and matrix mineralization. In sum, these results have implications on the modulation of three-dimensional collagen-based gel structural stability and on the stimulation and maintenance of the MSC committed phenotype inherent to the in vitro formation of chondral tissue and bone, as well as on potential multilayered complex tissues. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Diferenciação Celular , Condrogênese , Colágeno/química , Fibroínas/química , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Animais , Antígenos de Diferenciação/biossíntese , Células Cultivadas , Células-Tronco Mesenquimais/citologia , Camundongos
18.
Tissue Eng Part A ; 22(15-16): 1047-60, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27411949

RESUMO

Retracting hypertrophic scars resulting from healed burn wounds heavily impact on the patients' life quality. Biomaterial scaffolds guiding burned-out skin regeneration could suppress or lessen scar retraction. Here we report a novel silk noil-based three-dimensional (3D) nonwoven scaffold produced by carding and needling with no formic acid exposure, which might improve burn healing. Once wetted, it displays human skin-like physical features and a high biocompatibility. Human keratinocyte-like cervical carcinoma C4-I cells seeded onto the carded-needled nonwovens in vitro quickly adhered to them, grew, and actively metabolized glutamine releasing lactate. As on plastic, they released no proinflammatory IL-1ß, although secreting tumor necrosis factor-alpha, an inducer of the autocrine mitogen amphiregulin in such cells. Once grafted into interscapular subcutaneous tissue of mice, carded-needled nonwovens guided the afresh assembly of a connective tissue enveloping the fibroin microfibers and filling the interposed voids within 3 months. Fibroblasts and a few poly- or mononucleated macrophages populated the engineered tissue. Besides, its extracellular matrix contained thin sparse collagen fibrils and a newly formed vascular network whose endothelin-1-expressing endothelial cells grew first on the fibroin microfibrils and later expanded into the intervening matrix. Remarkably, no infiltrates of inflammatory leukocytes and no packed collagen fibers bundles among fibroin microfibers, no fibrous capsules at the grafts periphery, and hence no foreign body response was obtained at the end of 3 months of observation. Therefore, we posit that silk noil-based 3D carded-needled nonwoven scaffolds are tools for translational medicine studies as they could guide connective tissue regeneration at deep burn wounds averting scar retraction with good functional results.


Assuntos
Materiais Biocompatíveis/química , Teste de Materiais , Seda/química , Pele Artificial , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Linhagem Celular Tumoral , Humanos , Camundongos
19.
Adv Healthc Mater ; 5(17): 2271-82, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27240295

RESUMO

Replacement strategies arise as promising approaches in case of inherited retinal dystrophies leading to blindness. A fully organic retinal prosthesis made of conjugated polymers layered onto a silk fibroin substrate is engineered. First, the biophysical and surface properties are characterized; then, the long-term biocompatibility is assessed after implantation of the organic device in the subretinal space of 3-months-old rats for a period of five months. The results indicate a good stability of the subretinal implants over time, with preservation of the physical properties of the polymeric layer and a tight contact with the outer retina. Immunoinflammatory markers detect only a modest tissue reaction to the surgical insult and the foreign body that peaks shortly after surgery and progressively decreases with time to normal levels at five months after implantation. Importantly, the integrity of the polymeric layer in direct contact with the retinal tissue is preserved after five months of implantation. The recovery of the foreign-body tissue reaction is also associated with a normal b-wave in the electroretinographic response. The results demonstrate that the device implanted in nondystrophic eyes is well tolerated, highly biocompatible, and suitable as retinal prosthesis in case of photoreceptor degeneration.


Assuntos
Materiais Biocompatíveis/química , Implantes Experimentais , Teste de Materiais , Retina , Animais , Ratos
20.
Prep Biochem Biotechnol ; 46(7): 639-47, 2016 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26675121

RESUMO

The production of laccases from Trametes pubescens was investigated along with the role of nutrients and elicitors. Copper proved to be a fundamental inducer, although productivity yields were consistently enhanced only in the presence of additional compounds (textile dyes). Using a central composite design, the optimal culture condition was examined, by taking into consideration the three distinct variables and their combinatorial effect. The 290 U ml(-1) of laccases were produced after setting nitrogen, copper, and reactive blue 19 concentration; in a bioreactor, activity recovery was lower (90 U ml(-1)) and pellet morphology was different. The activity of the laccase crude extract was maximal at 60°C and stable for 14 h at 50°C and for 2 months at pH 6 and room temperature. The biotechnological potential was assessed, confirming the capacity to decolorize single or mixed solutions of textile dyes and to enhance the whitening yield of raw cotton fibers, working in synergism with the conventional H2O2-based method.


Assuntos
Cor , Corantes/química , Fibra de Algodão , Lacase/metabolismo , Trametes/enzimologia , Reatores Biológicos , Meios de Cultura , Fermentação , Concentração de Íons de Hidrogênio , Lacase/biossíntese , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...