Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acad Radiol ; 31(2): 572-581, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37563023

RESUMO

RATIONALE AND OBJECTIVES: To demonstrate the feasibility and potential of using a second-generation prototype photon-counting computed tomography (CT) system to provide simultaneous high spatial resolution images and high spectral resolution material information across a range of routine imaging tasks using clinical patient exposure levels. MATERIALS AND METHODS: The photon-counting system employs an innovative silicon-based photon-counting detector to provide a balanced approach to ultra-high-resolution spectral CT imaging. An initial cohort of volunteer subjects was imaged using the prototype photon-counting system. Acquisition technique parameters and radiation dose exposures were guided by routine clinical exposure levels used at the institution. Images were reconstructed in native slice thickness using an early version of a spectral CT reconstruction algorithm Samples of images across a range of clinical tasks were selected and presented for review. RESULTS: Clinical cases are presented across inner ear, carotid angiography, chest, and musculoskeletal imaging tasks. Initial reconstructed images illustrate ultra-high spatial resolution imaging. The fine detail of small structures and pathologies is clearly visualized, and structural boundaries are well delineated. The prototype system additionally provides concomitant spectral information with high spatial resolution. CONCLUSION: This initial study demonstrates that routine imaging at clinically appropriate patient exposure levels is feasible using a novel deep-silicon photon-counting detector CT system. Furthermore, a deep-silicon detector may provide a balanced approach to photon-counting CT, providing high spatial resolution imaging with simultaneous high-fidelity spectral information.


Assuntos
Silício , Tomografia Computadorizada por Raios X , Humanos , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos , Fótons
2.
Phys Med Biol ; 63(23): 235003, 2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30465547

RESUMO

Knowledge of x-ray attenuation is essential for developing and evaluating x-ray imaging technologies. In mammography, measurement of breast density, dose estimation, and differentiation between cysts and solid tumours are example applications requiring accurate data on tissue attenuation. Published attenuation data are, however, sparse and cover a relatively wide range. To supplement available data we have previously measured the attenuation of cyst fluid and solid lesions using photon-counting spectral mammography. The present study aims to measure the attenuation of normal adipose and glandular tissue, and to measure the effect of formalin fixation, a major uncertainty in published data. A total of 27 tumour specimens, seven fibro-glandular tissue specimens, and 15 adipose tissue specimens were included. Spectral (energy-resolved) images of the samples were acquired and the image signal was mapped to equivalent thicknesses of two known reference materials, from which x-ray attenuation as a function of energy can be derived. The spread in attenuation between samples was relatively large, partly because of natural variation. The variation of malignant and glandular tissue was similar, whereas that of adipose tissue was lower. Formalin fixation slightly altered the attenuation of malignant and glandular tissue, whereas the attenuation of adipose tissue was not significantly affected. The difference in attenuation between fresh tumour tissue and cyst fluid was smaller than has previously been measured for fixed tissue, but the difference was still significant and discrimination of these two tissue types is still possible. The difference between glandular and malignant tissue was close-to significant; it is reasonable to expect a significant difference with a larger set of samples. We believe that our studies have contributed to lower the overall uncertainty of breast tissue attenuation in the literature due to the relatively large sample sets, the novel measurement method, and by clarifying the difference between fresh and fixed tissue.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Mama/diagnóstico por imagem , Mamografia/métodos , Densidade da Mama , Neoplasias da Mama/classificação , Neoplasias da Mama/patologia , Feminino , Humanos , Raios X
3.
Phys Med Biol ; 63(21): 215023, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30375362

RESUMO

X-ray characteristics of body tissues are of crucial importance for developing and optimizing x-ray imaging techniques, in particular for dosimetry and spectral imaging applications. For breast imaging, the most important tissues are fibro-glandular, adipose and skin tissue. Some work has and is being done to better characterize these tissue types, in particular fibro-glandular and adipose tissue. In the case of breast skin, several recent studies have been published on the average skin thickness, but with regards to x-ray attenuation, the only published data, to the knowledge of the authors, is the elemental composition analysis of Hammerstein et al (1979 Radiology 130 485-91). This work presents an overview of breast skin thickness studies and a measurement of the effective atomic number ([Formula: see text]) of breast skin using spectral mammography. [Formula: see text], which together with the density forms the attenuation, is used to validate the work by Hammerstein et al, and the dependence of clinical parameters on [Formula: see text] is explored. Measurements were conducted on the skin edge of spectral mammograms using clinical data from a screening population (n = 709). The weighted average of breast skin thickness reported in studies between 1997 and 2013 was found to be [Formula: see text] mm. Mean [Formula: see text] was found to be 7.365 (95% CI: 7.364,7.366) for normal breast skin and 7.441 (95% CI: 7.440,7.442) for the nipple and areola. [Formula: see text] of normal breast skin is in agreement with Hammerstein et al, despite the different methods and larger sample size used. A small but significant increase in [Formula: see text] was found with age, but the increase is too small to be relevant for most applications. We conclude that normal breast skin is well described by a 1.56 mm skin layer and the elemental composition presented by Hammerstein et al (1979 Radiology 130 485-91) and recommend using these characteristics when modelling breast skin.


Assuntos
Mama/anatomia & histologia , Mamografia/métodos , Pele/anatomia & histologia , Tecido Adiposo/anatomia & histologia , Tecido Adiposo/diagnóstico por imagem , Mama/diagnóstico por imagem , Feminino , Humanos , Pele/diagnóstico por imagem , Raios X
4.
Med Phys ; 45(10): 4392-4401, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30091470

RESUMO

PURPOSE: Digital breast tomosynthesis (DBT) is becoming an important part of breast cancer screening and diagnosis. Compared to two-dimensional mammography, tomosynthesis introduces limited three-dimensional (3D) resolution, but maintains high in-plane resolution, low dose, and allows for similar clinical protocols. The scanning motion and oblique projections of tomosynthesis acquisitions introduce shift-variance to the image quality, in addition to effects such as source blurring and geometric magnification. Shift-variant detector response caused by oblique incidence has been extensively studied previously and is most easily mitigated by letting the source and detector move in sync. In addition, conical reconstruction grids, that is, a grid aligned with the central tomosynthesis projection, have been proposed to compensate for magnification effects. This paper introduces a shift-variant cascaded systems model for tomosynthesis and validates it against measurements. As an example, the model was used to investigate the shift-variance of a tomosynthesis system. METHODS: The shift-variant cascaded systems model was validated on a slit-scanning photon-counting DBT system, with synchronous source-detector movement, using simple back-projection in a conical reconstruction volume. The modulation transfer function (MTF), normalized noise-power spectrum (NNPS), and detective quantum efficiency (DQE) were used as figures of merit. Simulations were performed for single points while measurements were done over a finite volume, assuming local shift invariance. To investigate the full extent of shift-variance, 80 locations across the volume were simulated, and the MTF and DQE at 2.5 lp/mm were calculated as a function of position. RESULTS: The simulated metrics generally agreed well with their corresponding measurements. The frequency at 50% MTF along the scan direction showed a relatively small variation, ranging from 2.1 to 2.4 lp/mm for the different locations. The frequency at 50% MTF along the chest-mammilla direction showed a larger variation, ranging from 2.9 to 3.8 lp/mm. All points exhibited a similarly shaped NNPS but the noise magnitude varied with slice height. The zero-frequency DQE in reconstructed slices was lower than that of the projections, an effect likely caused by noise-aliasing increasing the zero-frequency noise. CONCLUSIONS: A shift-variant cascaded systems model has been developed for slit-scanning tomosynthesis using simple back-projection. The model was successfully validated against measurements. Even though the study was performed on a slit-scanning system, several parts of the framework can be applied and extended to other tomosynthesis geometries. The conical reconstruction grid has low variation in image quality in the scan direction where the 3D information is acquired, but source and geometric magnification still dominate in the slit direction, causing a larger variation in image quality. We conclude that image quality is close to shift-invariant in the scan direction, but not in the height and chest-mammilla directions, and we recommend that small measurement volumes are used when measuring image quality in these directions to minimize the effects of shift variance.


Assuntos
Mama/diagnóstico por imagem , Mamografia/métodos , Humanos , Imageamento Tridimensional , Controle de Qualidade
5.
Med Phys ; 45(2): 635-638, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29265414

RESUMO

PURPOSE: Digital breast tomosynthesis (DBT) is an emerging tool for breast-cancer screening and diagnostics. The purpose of this study is to present a second-generation photon-counting slit-scanning DBT system and compare it to the first-generation system in terms of geometry and image quality. The study presents the first image-quality measurements on the second-generation system. METHOD: The geometry of the new system is based on a combined rotational and linear motion, in contrast to a purely rotational scan motion in the first generation. In addition, the calibration routines have been updated. Image quality was measured in the center of the image field in terms of in-slice modulation transfer function (MTF), artifact spread function (ASF), and in-slice detective quantum efficiency (DQE). Images were acquired using a W/Al 29 kVp spectrum at 13 mAs with 2 mm Al additional filtration and reconstructed using simple back-projection. RESULT: The in-slice 50% MTF was improved in the chest-mammilla direction, going from 3.2 to 3.5 lp/mm, and the zero-frequency DQE increased from 0.71 to 0.77. The MTF and ASF were otherwise found to be on par for the two systems. The new system has reduced in-slice variation of the tomographic angle. CONCLUSIONS: The new geometry is less curved, which reduces in-slice tomographic-angle variation, and increases the maximum compression height, making the system accessible for a larger population. The improvements in MTF and DQE were attributed to the updated calibration procedures. We conclude that the second-generation system maintains the key features of the photon-counting system while maintaining or improving image quality and improving the maximum compression height.


Assuntos
Mamografia/instrumentação , Fótons , Desenho de Equipamento
6.
Med Phys ; 45(2): 549-560, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29159881

RESUMO

PURPOSE: It has been shown that breast tomosynthesis may improve sensitivity and specificity compared to two-dimensional mammography, resulting in increased detection-rate of cancers or lowered call-back rates. The purpose of this study is to characterize a spectral photon-counting multislit breast tomosynthesis system that is able to do single-scan spectral imaging with multiple collimated x-ray beams. The system differs in many aspects compared to conventional tomosynthesis using energy-integrating flat-panel detectors. METHODS: The investigated system was a prototype consisting of a dual-threshold photon-counting detector with 21 collimated line detectors scanning across the compressed breast. A review of the system is done in terms of detector, acquisition geometry, and reconstruction methods. Three reconstruction methods were used, simple back-projection, filtered back-projection and an iterative algebraic reconstruction technique. The image quality was evaluated by measuring the modulation transfer-function (MTF), normalized noise-power spectrum, detective quantum-efficiency (DQE), and artifact spread-function (ASF) on reconstructed spectral tomosynthesis images for a total-energy bin (defined by a low-energy threshold calibrated to remove electronic noise) and for a high-energy bin (with a threshold calibrated to split the spectrum in roughly equal parts). Acquisition was performed using a 29 kVp W/Al x-ray spectrum at a 0.24 mGy exposure. RESULTS: The difference in MTF between the two energy bins was negligible, that is, there was no energy dependence on resolution. The MTF dropped to 50% at 1.5 lp/mm to 2.3 lp/mm in the scan direction and 2.4 lp/mm to 3.3 lp/mm in the slit direction, depending on the reconstruction method. The full width at half maximum of the ASF was found to range from 13.8 mm to 18.0 mm for the different reconstruction methods. The zero-frequency DQE of the system was found to be 0.72. The fraction of counts in the high-energy bin was measured to be 59% of the total detected spectrum. Scantimes ranged from 4 s to 16.5 s depending on voltage and current settings. CONCLUSIONS: The characterized system generates spectral tomosynthesis images with a dual-energy photon-counting detector. Measurements show a high DQE, enabling high image quality at a low dose, which is beneficial for low-dose applications such as screening. The single-scan spectral images open up for applications such as quantitative material decomposition and contrast-enhanced tomosynthesis.


Assuntos
Mama/diagnóstico por imagem , Mamografia/métodos , Fótons , Humanos
7.
Med Phys ; 44(7): 3579-3593, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28421611

RESUMO

PURPOSE: To evaluate a method for measuring breast density using photon-counting spectral mammography. Breast density is an indicator of breast cancer risk and diagnostic accuracy in mammography, and can be used as input to personalized screening, treatment monitoring and dose estimation. METHODS: The measurement method employs the spectral difference in x-ray attenuation between adipose and fibro-glandular tissue, and does not rely on any a priori information. The method was evaluated using phantom measurements on tissue-equivalent material (slabs and breast-shaped phantoms) and using clinical data from a screening population (n=1329). A state-of-the-art nonspectral method for breast-density assessment was used for benchmarking. RESULTS: The precision of the spectral method was estimated to be 1.5-1.8 percentage points (pp) breast density. Expected correlations were observed in the screening population for thickness versus breast density, dense volume, breast volume, and compression height. Densities ranged between 4.5% and 99.6%, and exhibited a skewed distribution with a mode of 12.5%, a median of 18.3%, and a mean of 23.7%. The precision of the nonspectral method was estimated to be 2.7-2.8 pp. The major uncertainty of the nonspectral method originated from the thickness estimate, and in particular thin/dense breasts posed problems compared to the spectral method. CONCLUSIONS: The spectral method yielded reasonable results in a screening population with a precision approximately two times that of the nonspectral method, which may improve or enable applications of breast-density measurement on an individual basis such as treatment monitoring and personalized screening.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Mamografia , Fótons , Mama/anatomia & histologia , Humanos , Masculino , Imagens de Fantasmas , Raios X
8.
Phys Med Biol ; 61(7): 2595-612, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26961507

RESUMO

Knowledge of x-ray attenuation is essential for developing and evaluating x-ray imaging technologies. For instance, techniques to distinguish between cysts and solid tumours at mammography screening would be highly desirable to reduce recalls, but the development requires knowledge of the x-ray attenuation for cysts and tumours. We have previously measured the attenuation of cyst fluid using photon-counting spectral mammography. Data on x-ray attenuation for solid breast lesions are available in the literature, but cover a relatively wide range, likely caused by natural spread between samples, random measurement errors, and different experimental conditions. In this study, we have adapted a previously developed spectral method to measure the linear attenuation of solid breast lesions. A total of 56 malignant and 5 benign lesions were included in the study. The samples were placed in a holder that allowed for thickness measurement. Spectral (energy-resolved) images of the samples were acquired and the image signal was mapped to equivalent thicknesses of two known reference materials, which can be used to derive the x-ray attenuation as a function of energy. The spread in equivalent material thicknesses was relatively large between samples, which is likely to be caused mainly by natural variation and only to a minor extent by random measurement errors and sample inhomogeneity. No significant difference in attenuation was found between benign and malignant solid lesions. The separation between cyst-fluid and tumour attenuation was, however, significant, which suggests it may be possible to distinguish cystic from solid breast lesions, and the results lay the groundwork for a clinical trial. In addition, the study adds a relatively large sample set to the published data and may contribute to a reduction in the overall uncertainty in the literature.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Mamografia/métodos , Feminino , Humanos , Fótons , Raios X
9.
Invest Radiol ; 51(5): 340-7, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26741891

RESUMO

OBJECTIVES: Round lesions are a common mammographic finding, which can contribute more than 20% of overall recalls at screening. Discrimination of cystic fluid from solid tissue by spectral x-ray imaging has been demonstrated in specimen experiments. This work translates these results into a clinical pilot study to investigate the feasibility of discriminating cystic from solid lesions using spectral mammography. MATERIALS AND METHODS: Women undergoing mammography as part of their routine diagnostic workup were consented for analysis of spectral information obtained from a photon-counting mammography system. Images were analyzed retrospectively after diagnosis was confirmed with ultrasound and pathology. Well-defined solitary lesions were delineated independently by 3 expert radiologists. A breast lesion model is generated from the spectral mammography data using the energy-dependent x-ray attenuation of cyst fluid, carcinoma, and adipose and glandular tissue. From the breast lesion model, 2 spectral features are computed and combined in a 2-feature discrimination algorithm, which is evaluated in an analysis of the receiver operating characteristic curve for the task of identifying solid lesions ("positive result"). Expected outcomes on a screening population are extrapolated from this pilot study by cross-validation with bootstrapping using a 95% confidence interval (CI). RESULTS: The 2-feature discrimination algorithm was evaluated on the set of 119 eligible lesions (62 solids, 57 cysts) of diameter greater than 10 mm. The area under the receiver operating characteristic curve (AUC) was 0.88 with a specificity of 61% at the 99% sensitivity level on average over all expert radiologists. Cross-validation with bootstrapping of the clinical data revealed an AUC of 0.89 (95% CI, 0.79-0.96) and a specificity of 56% (95% CI, 33%-78%) when operating the algorithm at the 99% sensitivity level. CONCLUSIONS: Discriminating cystic from solid lesions with spectral mammography demonstrates promising results with the potential to reduce mammographic recalls. It is estimated that for each missed cancer at least 625 cystic lesions would have been correctly identified and hence would not have been needed to be recalled. Our results justify undertaking a larger reader study to refine the algorithm and determine clinically relevant thresholds to allow safe classification of cystic lesions by spectral mammography.


Assuntos
Cisto Mamário/diagnóstico por imagem , Mamografia/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Neoplasias da Mama/diagnóstico por imagem , Carcinoma Ductal de Mama/diagnóstico por imagem , Diagnóstico Diferencial , Feminino , Humanos , Pessoa de Meia-Idade , Projetos Piloto
10.
Med Phys ; 41(12): 121903, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25471963

RESUMO

PURPOSE: Beam-quality optimization in digital mammography traditionally considers detection of a target obscured by quantum noise in a homogeneous background. This does not correspond well to the clinical imaging task because real mammographic images contain a complex superposition of anatomical structures, resulting in anatomical noise that may dominate over quantum noise. The purpose of this paper is to assess the influence on optimal beam quality in mammography when anatomical noise is taken into account. METHODS: The detectability of microcalcifications and masses was quantified using a theoretical ideal-observer model that included quantum noise as well as anatomical noise and a simplified model of a photon-counting mammography system. The outcome was experimentally verified using two types of simulated tissue phantoms. RESULTS: The theoretical model showed that the detectability of tumors and microcalcifications behaves differently with respect to beam quality and dose. The results for small microcalcifications were similar to what traditional optimization methods yield, which is to be expected because quantum noise dominates over anatomical noise at high spatial frequencies. For larger tumors, however, low-frequency anatomical noise was the limiting factor. Because anatomical structure noise has similar energy dependence as tumor contrast, the optimal x-ray energy was found to be higher and the useful energy region was wider than traditional methods suggest. A simplified scalar model was able to capture this behavior using a fitted noise mixing parameter. The phantom measurements confirmed these theoretical results. CONCLUSIONS: It was shown that since quantum noise constitutes only a small fraction of the noise, the dose could be reduced substantially without sacrificing tumor detectability. Furthermore, when anatomical noise is included, the tube voltage can be increased well beyond what is conventionally considered optimal and used clinically, without loss of image quality. However, no such conclusions can be drawn for the more complex mammographic imaging task as a whole.


Assuntos
Mamografia/estatística & dados numéricos , Intensificação de Imagem Radiográfica , Fenômenos Biofísicos , Doenças Mamárias/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Calcinose/diagnóstico por imagem , Feminino , Humanos , Mamografia/normas , Modelos Anatômicos , Modelos Teóricos , Imagens de Fantasmas/estatística & dados numéricos , Fótons , Doses de Radiação , Intensificação de Imagem Radiográfica/normas , Razão Sinal-Ruído
11.
J Med Imaging (Bellingham) ; 1(3): 031003, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26158045

RESUMO

In x-ray imaging, contrast information content varies with photon energy. It is, therefore, possible to improve image quality by weighting photons according to energy. We have implemented and evaluated so-called energy weighting on a commercially available spectral photon-counting mammography system. The technique was evaluated using computer simulations, phantom experiments, and analysis of screening mammograms. The CNR benefit of energy weighting for a number of relevant target-background combinations measured by the three methods fell in the range of 2.2 to 5.2% when using optimal weight factors. This translates to a potential dose reduction at constant CNR in the range of 4.5 to 11%. We expect the choice of weight factor in practical implementations to be straightforward because (1) the CNR improvement was not very sensitive to weight, (2) the optimal weight was similar for all investigated target-background combinations, (3) aluminum/PMMA phantoms were found to represent clinically relevant tasks well, and (4) the optimal weight could be calculated directly from pixel values in phantom images. Reasonable agreement was found between the simulations and phantom measurements. Manual measurements on microcalcifications and automatic image analysis confirmed that the CNR improvement was detectable in energy-weighted screening mammograms.

12.
Phys Med Biol ; 58(24): 8609-20, 2013 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-24254377

RESUMO

Knowledge of x-ray attenuation is essential for developing and evaluating x-ray imaging technologies. For instance, techniques to better characterize cysts at mammography screening would be highly desirable to reduce recalls, but the development is hampered by the lack of attenuation data for cysts. We have developed a method to measure x-ray attenuation of tissue samples using a prototype photon-counting spectral mammography unit. The method was applied to measure the attenuation of 50 samples of breast cyst fluid and 50 samples of water. Spectral (energy-resolved) images of the samples were acquired and the image signal was mapped to equivalent thicknesses of two known reference materials, which can be used to derive the x-ray attenuation as a function of energy. The attenuation of cyst fluid was found to be significantly different from water. There was a relatively large natural spread between different samples of cyst fluid, whereas the homogeneity of each individual sample was found to be good; the variation within samples did not reach above the quantum noise floor. The spectral method proved stable between several measurements on the same sample. Further, chemical analysis and elemental attenuation calculation were used to validate the spectral measurement on a subset of the samples. The two methods agreed within the precision of the elemental attenuation calculation over the mammographic energy range.


Assuntos
Mama/patologia , Doença da Mama Fibrocística/diagnóstico por imagem , Doença da Mama Fibrocística/patologia , Mamografia/métodos , Líquido Cístico/diagnóstico por imagem , Feminino , Humanos , Imagens de Fantasmas , Raios X
13.
Med Phys ; 39(9): 5317-35, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22957600

RESUMO

PURPOSE: To provide a cascaded-systems framework based on the noise-power spectrum (NPS), modulation transfer function (MTF), and noise-equivalent number of quanta (NEQ) for quantitative evaluation of differential phase-contrast imaging (Talbot interferometry) in relation to conventional absorption contrast under equal-dose, equal-geometry, and, to some extent, equal-photon-economy constraints. The focus is a geometry for photon-counting mammography. METHODS: Phase-contrast imaging is a promising technology that may emerge as an alternative or adjunct to conventional absorption contrast. In particular, phase contrast may increase the signal-difference-to-noise ratio compared to absorption contrast because the difference in phase shift between soft-tissue structures is often substantially larger than the absorption difference. We have developed a comprehensive cascaded-systems framework to investigate Talbot interferometry, which is a technique for differential phase-contrast imaging. Analytical expressions for the MTF and NPS were derived to calculate the NEQ and a task-specific ideal-observer detectability index under assumptions of linearity and shift invariance. Talbot interferometry was compared to absorption contrast at equal dose, and using either a plane wave or a spherical wave in a conceivable mammography geometry. The impact of source size and spectrum bandwidth was included in the framework, and the trade-off with photon economy was investigated in some detail. Wave-propagation simulations were used to verify the analytical expressions and to generate example images. RESULTS: Talbot interferometry inherently detects the differential of the phase, which led to a maximum in NEQ at high spatial frequencies, whereas the absorption-contrast NEQ decreased monotonically with frequency. Further, phase contrast detects differences in density rather than atomic number, and the optimal imaging energy was found to be a factor of 1.7 higher than for absorption contrast. Talbot interferometry with a plane wave increased detectability for 0.1-mm tumor and glandular structures by a factor of 3-4 at equal dose, whereas absorption contrast was the preferred method for structures larger than ∼0.5 mm. Microcalcifications are small, but differ from soft tissue in atomic number more than density, which is favored by absorption contrast, and Talbot interferometry was barely beneficial at all within the resolution limit of the system. Further, Talbot interferometry favored detection of "sharp" as opposed to "smooth" structures, and discrimination tasks by about 50% compared to detection tasks. The technique was relatively insensitive to spectrum bandwidth, whereas the projected source size was more important. If equal photon economy was added as a restriction, phase-contrast efficiency was reduced so that the benefit for detection tasks almost vanished compared to absorption contrast, but discrimination tasks were still improved close to a factor of 2 at the resolution limit. CONCLUSIONS: Cascaded-systems analysis enables comprehensive and intuitive evaluation of phase-contrast efficiency in relation to absorption contrast under requirements of equal dose, equal geometry, and equal photon economy. The benefit of Talbot interferometry was highly dependent on task, in particular detection versus discrimination tasks, and target size, shape, and material. Requiring equal photon economy weakened the benefit of Talbot interferometry in mammography.


Assuntos
Interferometria/métodos , Modelos Lineares , Fótons , Absorção , Mamografia
14.
Opt Lett ; 36(4): 555-7, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21326454

RESUMO

We describe a point-focusing x-ray lens made of a rolled polyimide film with etched prisms. The resulting lens is a cylinder with a large number of prisms forming an internal conic structure. The method allows for the manufacturing of lenses with large apertures and short focal lengths, for energies up to at least 100 keV. In order to evaluate the concept, we have hand-rolled a few lenses and evaluated them at a synchrotron source. The measured performance of the prototype is promising, and deviations from the theoretical limits are quantitatively explained.

15.
Med Phys ; 37(5): 2017-29, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20527535

RESUMO

PURPOSE: Spectral imaging is a method in medical x-ray imaging to extract information about the object constituents by the material-specific energy dependence of x-ray attenuation. The authors have investigated a photon-counting spectral imaging system with two energy bins for contrast-enhanced mammography. System optimization and the potential benefit compared to conventional non-energy-resolved absorption imaging was studied. METHODS: A framework for system characterization was set up that included quantum and anatomical noise and a theoretical model of the system was benchmarked to phantom measurements. RESULTS: Optimal combination of the energy-resolved images corresponded approximately to minimization of the anatomical noise, which is commonly referred to as energy subtraction. In that case, an ideal-observer detectability index could be improved close to 50% compared to absorption imaging in the phantom study. Optimization with respect to the signal-to-quantum-noise ratio, commonly referred to as energy weighting, yielded only a minute improvement. In a simulation of a clinically more realistic case, spectral imaging was predicted to perform approximately 30% better than absorption imaging for an average glandularity breast with an average level of anatomical noise. For dense breast tissue and a high level of anatomical noise, however, a rise in detectability by a factor of 6 was predicted. Another approximately 70%-90% improvement was found to be within reach for an optimized system. CONCLUSIONS: Contrast-enhanced spectral mammography is feasible and beneficial with the current system, and there is room for additional improvements. Inclusion of anatomical noise is essential for optimizing spectral imaging systems.


Assuntos
Meios de Contraste , Mamografia/métodos , Fótons , Benchmarking , Humanos , Processamento de Imagem Assistida por Computador , Mamografia/instrumentação , Modelos Teóricos , Imagens de Fantasmas , Doses de Radiação
16.
Radiat Prot Dosimetry ; 139(1-3): 339-42, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20179073

RESUMO

Chromatic properties of the multi-prism and prism-array X-ray lenses (MPL and PAL) can potentially be utilized for efficient energy filtering and dose reduction in mammography. The line-shaped foci of the lenses are optimal for coupling to photon-counting silicon strip detectors in a scanning system. A theoretical model was developed and used to investigate the benefit of two lenses compared with an absorption-filtered reference system. The dose reduction of the MPL filter was approximately 15% compared with the reference system at matching scan time, and the spatial resolution was higher. The dose of the PAL-filtered system was found to be approximately 20% lower than for the reference system at equal scan time and resolution, and only approximately 20% higher than for a monochromatic beam. An investigation of some practical issues remains, including the feasibility of brilliant-enough X-ray sources and manufacturing of a polymer PAL.


Assuntos
Filtração/instrumentação , Lentes , Mamografia/instrumentação , Reconhecimento Automatizado de Padrão/métodos , Intensificação de Imagem Radiográfica/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Humanos , Fótons , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
17.
Opt Express ; 17(14): 11388-98, 2009 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-19582053

RESUMO

We present an experimental and theoretical evaluation of an x-ray energy filter based on the chromatic properties of a prism-array lens (PAL). It is intended for small-scale applications such as medical imaging. The PAL approximates a Fresnel lens and allows for high efficiency compared to filters based on ordinary refractive lenses, however at the cost of a lower energy resolution. Geometrical optics was found to provide a good approximation for the performance of a flawless lens, but a field-propagation model was used for quantitative predictions. The model predicted a 0.29 E/E energy resolution and an intensity gain of 6.5 for a silicon PAL at 23.5 keV. Measurements with an x-ray tube showed good agreement with the model in energy resolution and peak energy, but a blurred focal line contributed to a 29% gain reduction. We believe the blurring to be caused mainly by lens imperfections, in particular at the periphery of the lens.


Assuntos
Óptica e Fotônica , Algoritmos , Desenho de Equipamento/instrumentação , Aumento da Imagem/instrumentação , Lentes , Microscopia Eletrônica de Varredura/métodos , Modelos Estatísticos , Interpretação de Imagem Radiográfica Assistida por Computador/instrumentação , Refratometria/instrumentação , Síncrotrons , Raios X
18.
Med Phys ; 36(2): 626-33, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19292003

RESUMO

A multiprism lens (MPL) is a refractive x-ray lens with one-dimensional focusing properties. If used as a pre-object collimator in a scanning system for medical x-ray imaging, it reduces the divergence of the radiation and improves on photon economy compared to a slit collimator. Potential advantages include shorter acquisition times, a reduced tube loading, or improved resolution. We present the first images acquired with a MPL in a prototype for a scanning mammography system. The lens showed a gain of flux of 1.32 compared to a slit collimator at equal resolution, or a gain in resolution of 1.31-1.44 at equal flux. We expect the gain of flux in a clinical setup with an optimized MPL and a custom-made absorption filter to reach 1.67, or 1.45-1.54 gain in resolution.


Assuntos
Lentes , Radiografia/instrumentação , Humanos , Mamografia/instrumentação , Reprodutibilidade dos Testes , Espalhamento de Radiação , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA