Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(9): eadk9185, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38416818

RESUMO

Single-cell analyses of viral infections reveal heterogeneity that is not detected by traditional population-level studies. This study applies drop-based microfluidics to investigate the dynamics of herpes simplex virus type 1 (HSV-1) infection of neurons at the single-cell level. We used micrometer-scale Matrigel beads, termed microgels, to culture individual murine superior cervical ganglia (SCG) neurons or epithelial cells. Microgel-cultured cells are encapsulated in individual media-in-oil droplets with a dual-fluorescent reporter HSV-1, enabling real-time observation of viral gene expression and replication. Infection within drops revealed that the kinetics of initial viral gene expression and replication were dependent on the inoculating dose. Notably, increasing inoculating doses led to earlier onset of viral gene expression and more frequent productive viral replication. These observations provide crucial insights into the complexity of HSV-1 infection in neurons and emphasize the importance of studying single-cell outcomes of viral infection. These techniques for cell culture and infection in drops provide a foundation for future virology and neurobiology investigations.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Camundongos , Animais , Herpesvirus Humano 1/fisiologia , Microfluídica , Replicação Viral , Neurônios
2.
Adv Biol (Weinh) ; 8(1): e2300268, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37688354

RESUMO

One of the main components of articular cartilage is the chondrocyte's pericellular matrix (PCM), which is critical for regulating mechanotransduction, biochemical cues, and healthy cartilage development. Here, individual primary human chondrocytes (PHC) are encapsulated and cultured in 50 µm diameter alginate microgels using drop-based microfluidics. This unique culturing method enables PCM formation and manipulation of individual cells. Over ten days, matrix formation is observed using autofluorescence imaging, and the elastic moduli of isolated cells are measured using AFM. Matrix production and elastic modulus increase are observed for the chondrons cultured in microgels. Furthermore, the elastic modulus of cells grown in microgels increases ≈ten-fold over ten days, nearly reaching the elastic modulus of in vivo PCM. The AFM data is further analyzed using a Gaussian mixture model and shows that the population of PHCs grown in microgels exhibit two distinct populations with elastic moduli averaging 9.0 and 38.0 kPa. Overall, this work shows that microgels provide an excellent culture platform for the growth and isolation of PHCs, enabling PCM formation that is mechanically similar to native PCM. The microgel culture platform presented here has the potential to revolutionize cartilage regeneration procedures through the inclusion of in vitro developed PCM.


Assuntos
Cartilagem Articular , Microgéis , Humanos , Condrócitos/fisiologia , Microscopia de Força Atômica , Matriz Extracelular/fisiologia , Mecanotransdução Celular , Cartilagem Articular/fisiologia
3.
bioRxiv ; 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37790515

RESUMO

Single-cell analyses of viral infections often reveal heterogeneity that is not detected by traditional population-level studies. This study applies drop-based microfluidics to investigate the dynamics of HSV-1 infection of neurons at the single-cell level. We used micron-scale Matrigel beads, termed microgels, to culture individual murine Superior Cervical ganglia (SCG) neurons or epithelial cells. Microgel-cultured cells are subsequently enclosed in individual media-in-oil droplets with a dual fluorescent-reporter HSV-1, enabling real-time observation of viral gene expression and replication. Infection within drops revealed that the kinetics of initial viral gene expression and replication were dependent on the inoculating dose. Notably, increasing inoculating doses led to earlier onset of viral gene expression and more frequent productive viral replication. These observations provide crucial insights into the complexity of HSV-1 infection in neurons and emphasize the importance of studying single-cell outcomes of viral infection. The innovative techniques presented here for cell culture and infection in drops provide a foundation for future virology and neurobiology investigations.

4.
Biomed Mater ; 17(4)2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35609584

RESUMO

Matrigel is a polymeric extracellular matrix material produced by mouse cancer cells. Over the past four decades, Matrigel has been shown to support a wide variety of two- and three-dimensional cell and tissue culture applications including organoids. Despite widespread use, transport of molecules, cells, and colloidal particles through Matrigel can be limited. These limitations restrict cell growth, viability, and function and limit Matrigel applications. A strategy to improve transport through a hydrogel without modifying the chemistry or composition of the gel is to physically restructure the material into microscopic microgels and then pack them together to form a porous material. These 'granular' hydrogels have been created using a variety of synthetic hydrogels, but granular hydrogels composed of Matrigel have not yet been reported. Here we present a drop-based microfluidics approach for structuring Matrigel into a three-dimensional, mesoporous material composed of packed Matrigel microgels, which we call granular Matrigel. We show that restructuring Matrigel in this manner enhances the transport of colloidal particles and human dendritic cells (DCs) through the gel while providing sufficient mechanical support for culture of human gastric organoids (HGOs) and co-culture of human DCs with HGOs.


Assuntos
Microgéis , Animais , Colágeno , Combinação de Medicamentos , Matriz Extracelular/química , Hidrogéis/química , Laminina , Camundongos , Permeabilidade , Proteoglicanas
5.
Cells ; 11(5)2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-35269522

RESUMO

Articular cartilage is comprised of two main components, the extracellular matrix (ECM) and the pericellular matrix (PCM). The PCM helps to protect chondrocytes in the cartilage from mechanical loads, but in patients with osteoarthritis, the PCM is weakened, resulting in increased chondrocyte stress. As chondrocytes are responsible for matrix synthesis and maintenance, it is important to understand how mechanical loads affect the cellular responses of chondrocytes. Many studies have examined chondrocyte responses to in vitro mechanical loading by embedding chondrocytes in 3-D hydrogels. However, these experiments are mostly performed in the absence of PCM, which may obscure important responses to mechanotransduction. Here, drop-based microfluidics is used to culture single chondrocytes in alginate microgels for cell-directed PCM synthesis that closely mimics the in vivo microenvironment. Chondrocytes formed PCM over 10 days in these single-cell 3-D microenvironments. Mechanotransduction studies were performed, in which single-cell microgels mimicking the cartilage PCM were embedded in high-stiffness agarose. After physiological dynamic compression in a custom-built bioreactor, microgels exhibited distinct metabolomic profiles from both uncompressed and monolayer controls. These results demonstrate the potential of single cell encapsulation in alginate microgels to advance cartilage tissue engineering and basic chondrocyte mechanobiology.


Assuntos
Cartilagem Articular , Microgéis , Alginatos , Condrócitos , Humanos , Mecanotransdução Celular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...