Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 9(6)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063871

RESUMO

Capsid virus-like particles (cVLPs) are used as molecular scaffolds to increase the immunogenicity of displayed antigens. Modular platforms have been developed whereby antigens are attached to the surface of pre-assembled cVLPs. However, it remains unknown to what extent the employed cVLP backbone and conjugation system may influence the immune response elicited against the displayed antigen. Here, we performed a head-to-head comparison of antigen-specific IgG responses elicited by modular cVLP-vaccines differing by their employed cVLP backbone or conjugation system, respectively. Covalent antigen conjugation (i.e., employing the SpyTag/SpyCatcher system) resulted in significantly higher antigen-specific IgG titers compared to when using affinity-based conjugation (i.e., using biotin/streptavidin). The cVLP backbone also influenced the antigen-specific IgG response. Specifically, vaccines based on the bacteriophage AP205 cVLP elicited significantly higher antigen-specific IgG compared to corresponding vaccines using the human papillomavirus major capsid protein (HPV L1) cVLP. In addition, the AP205 cVLP platform mediated induction of antigen-specific IgG with a different subclass profile (i.e., higher IgG2a and IgG2b) compared to HPV L1 cVLP. These results demonstrate that the cVLP backbone and conjugation system can individually affect the IgG response elicited against a displayed antigen. These data will aid the understanding and process of tailoring modular cVLP vaccines to achieve improved immune responses.

2.
Nat Commun ; 12(1): 324, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436573

RESUMO

The rapid development of a SARS-CoV-2 vaccine is a global priority. Here, we develop two capsid-like particle (CLP)-based vaccines displaying the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. RBD antigens are displayed on AP205 CLPs through a split-protein Tag/Catcher, ensuring unidirectional and high-density display of RBD. Both soluble recombinant RBD and RBD displayed on CLPs bind the ACE2 receptor with nanomolar affinity. Mice are vaccinated with soluble RBD or CLP-displayed RBD, formulated in Squalene-Water-Emulsion. The RBD-CLP vaccines induce higher levels of serum anti-spike antibodies than the soluble RBD vaccines. Remarkably, one injection with our lead RBD-CLP vaccine in mice elicits virus neutralization antibody titers comparable to those found in patients that had recovered from COVID-19. Following booster vaccinations, the virus neutralization titers exceed those measured after natural infection, at serum dilutions above 1:10,000. Thus, the RBD-CLP vaccine is a highly promising candidate for preventing COVID-19.


Assuntos
Anticorpos Neutralizantes/imunologia , Vacinas contra COVID-19/imunologia , Capsídeo/imunologia , Ligação Proteica/imunologia , SARS-CoV-2/imunologia , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Antivirais/imunologia , COVID-19/prevenção & controle , Feminino , Humanos , Imunogenicidade da Vacina , Cinética , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Testes Sorológicos , Glicoproteína da Espícula de Coronavírus/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...