Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 23(1): 184, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050754

RESUMO

Out of the thousands of metabolites in a given specimen, most metabolomics experiments measure only hundreds, with poor overlap across experimental platforms. Here, we describe Metabolite Imputation via Rank-Transformation and Harmonization (MIRTH), a method to impute unmeasured metabolite abundances by jointly modeling metabolite covariation across datasets which have heterogeneous coverage of metabolite features. MIRTH successfully recovers masked metabolite abundances both within single datasets and across multiple, independently-profiled datasets. MIRTH demonstrates that latent information about otherwise unmeasured metabolites is embedded within existing metabolomics data, and can be used to generate novel hypotheses and simplify existing metabolomic workflows.


Assuntos
Metabolômica , Projetos de Pesquisa , Metabolômica/métodos
2.
Kidney Cancer J ; 19(2): 18-23, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34316321

RESUMO

Intratumoral genetic heterogeneity (ITH) poses a significant challenge to utilizing sequencing for decision making in the management of cancer. Although sequencing of multiple tumor regions can address the pitfalls of ITH, it does so at a significant increase in cost and resource utilization. We propose a pooled multiregional sequencing strategy, whereby DNA aliquots from multiple tumor regions are mixed prior to sequencing, as a cost-effective strategy to boost translational value by addressing ITH while preserving valuable residual tissue for secondary analysis. Focusing on kidney cancer, we demonstrate that DNA pooling from as few as two regions significantly increases mutation detection while reducing clonality misattribution. This leads to an increased fraction of patients identified with therapeutically actionable mutations, improved patient risk stratification, and improved inference of evolutionary trajectories with an accuracy comparable to bona fide multiregional sequencing. The same approach applied to non-small-cell lung cancer data substantially improves tumor mutational burden (TMB) detection. Our findings demonstrate that pooled DNA sequencing strategies are a cost-effective alternative to address intrinsic genetic heterogeneity in clinical settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...