Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 11(3)2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30960431

RESUMO

Roma Plastilina No. 1 (RP1), an artist modeling clay that has been used as a ballistic clay, is essential for evaluation and certification in standards-based ballistic resistance testing of body armor. It serves as a ballistic witness material (BWM) behind the armor, where the magnitude of the plastic deformation in the clay after a ballistic impact is the figure of merit (known as "backface signature"). RP1 is known to exhibit complex thermomechanical behavior that requires temperature conditioning and frequent performance-based evaluations to verify that its deformation response satisfies requirements. A less complex BWM formulation that allows for room-temperature storage and use as well as a more consistent thermomechanical behavior than RP1 is desired, but a validation based only on ballistic performance would be extensive and expensive to accommodate the different ballistic threats. A framework of lab-scale metrologies for measuring the effects of strain, strain rate, and temperature dependence on mechanical properties are needed to guide BWM development. The current work deals with rheological characterization of a candidate BWM, i.e., silicone composite backing material (SCBM), to understand the fundamental structure⁻property relationships in comparison to those of RP1. Small-amplitude oscillatory shear frequency sweep experiments were performed at temperatures that ranged from 20 °C to 50 °C to map elastic and damping contributions in the linear elastic regime. Large amplitude oscillatory shear (LAOS) experiments were conducted in the non-linear region and the material response was analyzed in the form of Lissajous curve representations with the values of perfect plastic dissipation ratio reported to identify the degree of plasticity. The results show that the SCBM exhibits dynamic properties that are similar in magnitude to those of temperature-conditioned RP1, but with minimal temperature sensitivity and weaker frequency dependence than RP1. Both SCBM and RP1 are identified as elastoviscoplastic materials, which is particularly important for accurate determination of backface signature in body armor evaluation. The mechanical properties of SCBM show some degree of aging and work history effects. The results from this work demonstrate that the rheological properties of SCBM, at small and large strains, are similar to RP1 with substantial improvements in BWM performance requirements in terms of temperature sensitivity and thixotropy.

2.
Forensic Sci Int ; 285: 1-12, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29426024

RESUMO

This paper describes a new witness material for quantifying the back face deformation (BFD) resulting from high rate impact of ballistic protective equipment. Accurate BFD quantification is critical for the assessment and certification of personal protective equipment, such as body armor and helmets, and ballistic evaluation. A common witness material is ballistic clay, specifically, Roma Plastilina No. 1 (RP1). RP1 must be heated to nearly 38°C to pass calibration, and used within a limited time frame to remain in calibration. RP1 also exhibits lot-to-lot variability and is sensitive to time, temperature, and handling procedures, which limits the BFD accuracy and reproducibility. A new silicone composite backing material (SCBM) was developed and tested side-by-side with heated RP1 using quasi-static indentation and compression, low velocity impact, spherical projectile penetration, and both soft and hard armor ballistic BFD measurements to compare their response over a broad range of strain rates and temperatures. The results demonstrate that SCBM mimics the heated RP1 response at room temperature and exhibits minimal temperature sensitivity. With additional optimization of the composition and processing, SCBM could be a drop-in replacement for RP1 that is used at room temperature during BFD quantification with minimal changes to the current RP1 handling protocols and infrastructure. It is anticipated that removing the heating requirement, and temperature-dependence, associated with RP1 will reduce test variability, simplify testing logistics, and enhance test range productivity.

3.
Anal Chem ; 82(15): 6712-6, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20608646

RESUMO

We describe a protocol to create tissue phantoms with hydrophobic nanoporous particles. The nanopores of the particles are loaded with biological molecules at the desired compositions. Tissue phantoms are prepared by immersing dried particles into aqueous biological matrixes. The hydrophobicity of the pore surface prevents the solution from penetrating into the nanopores, thus preserving the designed molecular composition inside the particles. This protocol provides a unique approach to preparing biological systems in small domains, at micrometer and nanometer dimensions, with well-defined boundaries and tailored biological and optical properties. The nanoporous particle approach is easy when compared to the common preparation methods such as with polymers and vesicles as it involves direct loading of the biological molecules into the pores and does not require complex synthetic steps. The method is adaptable, with tunable pore and particle sizes, and robust, with a rigid boundary to protect the designed biological domain. In addition to tissue phantom preparation, this approach is applicable in systems where a well-defined biological domain is desired.


Assuntos
Nanopartículas/química , Dióxido de Silício/química , Flavina-Adenina Dinucleotídeo/química , Interações Hidrofóbicas e Hidrofílicas , Microscopia Confocal , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...