Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Materials (Basel) ; 17(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38399073

RESUMO

In this study, we compared the material properties of linearly and sharply graded Ti6Al4V additively manufactured samples to investigate whether the more severe discontinuities caused by sharp grading can reduce performance. We performed compression testing with digital image correlation (DIC) in two loading directions for each grading design to simulate iso-stress and iso-strain conditions. We extracted the elastic stiffness, yield strength, yield strain, and energy absorption capacity of each sample. In addition, we used micro-computed tomography (micro-CT) imaging to examine the printing quality and dimensional accuracy. We found that sharply graded struts have a 12.95% increase in strut cross-sectional areas, whereas linearly graded struts produced an average of 49.24% increase compared to design. However, sharply graded and linearly graded FGL samples do not have statistically significant differences in elastic stiffness and yield strength. For the iso-strain condition, the average DIC-corrected stiffnesses for linearly and sharply graded samples were 6.15 GPa and 5.43 GPa, respectively (p = 0.4466), and the yield stresses were 290.4 MPa and 291.2 MPa, respectively (p = 0.5734). Furthermore, we confirmed different types of printing defects using micro-CT, including defective pores and disconnected struts. These results suggest that the loss of material properties caused by manufacturing defects outweighs the adverse effects of discrete-grading-induced discontinuities.

2.
Med Eng Phys ; 121: 104012, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37985018

RESUMO

Endoprosthetic reconstruction of the pelvic bone using 3D-printed, custom-made implants has delivered early load-bearing ability and good functional outcomes in the short term to individuals with pelvic sarcoma. However, excessive stress-shielding and subsequent resorption of peri­prosthetic bone can imperil the long-term stability of such implants. To evaluate the stress-shielding performance of pelvic prostheses, we developed a sequential modeling scheme using subject-specific finite element models of the pelvic bone-implant complex and personalized neuromusculoskeletal models for pre- and post-surgery walking. A new topology optimization approach is introduced for the stress-shielding resistant (SSR) design of custom pelvic prostheses, which uses 3D-printable porous lattice structures. The SSR optimization was applied to a typical pelvic prosthesis to reconstruct a type II+III bone resection. The stress-shielding performance of the optimized implant based on the SSR approach was compared against the conventional optimization. The volume of the peri­prosthetic bone predicted to undergo resorption post-surgery decreased from 44 to 18%. This improvement in stress-shielding resistance was achieved without compromising the structural integrity of the prosthesis. The SSR design approach has the potential to improve the long-term stability of custom-made pelvic prostheses.


Assuntos
Membros Artificiais , Ossos Pélvicos , Humanos , Desenho de Prótese , Próteses e Implantes , Ossos Pélvicos/cirurgia , Pelve , Análise de Elementos Finitos
3.
Artigo em Inglês | MEDLINE | ID: mdl-37831559

RESUMO

Muscle forces and joint moments estimated by electromyography (EMG)-driven musculoskeletal models are sensitive to the wrapping surface geometry defining muscle-tendon lengths and moment arms. Despite this sensitivity, wrapping surface properties are typically not personalized to subject movement data. This study developed a novel method for personalizing OpenSim cylindrical wrapping surfaces during EMG-driven model calibration. To avoid the high computational cost of repeated OpenSim muscle analyses, the method uses two-level polynomial surrogate models. Outer-level models specify time-varying muscle-tendon lengths and moment arms as functions of joint angles, while inner-level models specify time-invariant outer-level polynomial coefficients as functions of wrapping surface parameters. To evaluate the method, we used walking data collected from two individuals post-stroke and performed four variations of EMG-driven lower extremity model calibration: 1) no calibration of scaled generic wrapping surfaces (NGA), 2) calibration of outer-level polynomial coefficients for all muscles (SGA), 3) calibration of outer-level polynomial coefficients only for muscles with wrapping surfaces (LSGA), and 4) calibration of cylindrical wrapping surface parameters for muscles with wrapping surfaces (PGA). On average compared to NGA, SGA reduced lower extremity joint moment matching errors by 31%, LSGA by 24%, and PGA by 12%, with the largest reductions occurring at the hip. Furthermore, PGA reduced peak hip joint contact force by 47% bodyweight, which was the most consistent with published in vivo measurements. The proposed method for EMG-driven model calibration with wrapping surface personalization produces physically realistic OpenSim models that reduce joint moment matching errors while improving prediction of hip joint contact force.


Assuntos
Modelos Biológicos , Músculo Esquelético , Humanos , Eletromiografia/métodos , Músculo Esquelético/fisiologia , Calibragem , Articulação do Quadril/fisiologia , Fenômenos Biomecânicos
4.
J Orthop Res ; 41(12): 2569-2578, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37350016

RESUMO

Stakeholders in the modeling and simulation (M&S) community organized a workshop at the 2019 Annual Meeting of the Orthopaedic Research Society (ORS) entitled "Reproducibility in Modeling and Simulation of the Knee: Academic, Industry, and Regulatory Perspectives." The goal was to discuss efforts among these stakeholders to address irreproducibility in M&S focusing on the knee joint. An academic representative from a leading orthopedic hospital in the United States described a multi-institutional, open effort funded by the National Institutes of Health to assess model reproducibility in computational knee biomechanics. A regulatory representative from the United States Food and Drug Administration indicated the necessity of standards for reproducibility to increase utility of M&S in the regulatory setting. An industry representative from a major orthopedic implant company emphasized improving reproducibility by addressing indeterminacy in personalized modeling through sensitivity analyses, thereby enhancing preclinical evaluation of joint replacement technology. Thought leaders in the M&S community stressed the importance of data sharing to minimize duplication of efforts. A survey comprised 103 attendees revealed strong support for the workshop and for increasing emphasis on computational modeling at future ORS meetings. Nearly all survey respondents (97%) considered reproducibility to be an important issue. Almost half of respondents (45%) tried and failed to reproduce the work of others. Two-thirds of respondents (67%) declared that individual laboratories are most responsible for ensuring reproducible research whereas 44% thought that journals are most responsible. Thought leaders and survey respondents emphasized that computational models must be reproducible and credible to advance knee M&S.


Assuntos
Articulação do Joelho , Estados Unidos , Reprodutibilidade dos Testes , Simulação por Computador , Fenômenos Biomecânicos
5.
Med Eng Phys ; 111: 103930, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36792235

RESUMO

Despite showing promising functional outcomes for pelvic reconstruction after sarcoma resection, custom-made pelvic implants continue to exhibit high complication rates due to fixation failures. Patient-specific finite element models have been utilized by researchers to evaluate implant durability. However, the effect of assumed boundary and loading conditions on failure analysis results of fixation screws remains unknown. In this study, the postoperative stress distributions in the fixation screws of a state-of-the-art custom-made pelvic implant were simulated, and the risk of failure was estimated under various combinations of two bone-implant interaction models (tied vs. frictional contact) and four load cases from level-ground walking and stair activities. The study found that the average weighted peak von Mises stress could increase by 22-fold when the bone-implant interactions were modeled with a frictional contact model instead of a tied model, and the likelihood of fatigue and pullout failure for each screw could change dramatically when different combinations of boundary and loading conditions were used. The inclusion of additional boundary and loading conditions led to a more reliable analysis of fixation durability. These findings demonstrated the importance of simulating multiple boundary conditions and load cases for comprehensive implant design evaluation using finite element analysis.


Assuntos
Parafusos Ósseos , Pelve , Humanos , Análise de Elementos Finitos , Pelve/cirurgia , Fenômenos Biomecânicos , Fixação Interna de Fraturas/métodos , Estresse Mecânico
6.
Bone Joint J ; 105-B(3): 323-330, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36854328

RESUMO

Internal hemipelvectomy without reconstruction of the pelvis is a viable treatment for pelvic sarcoma; however, the time it takes to return to excellent function is quite variable. Some patients require greater time and rehabilitation than others. To determine if psoas muscle recovery is associated with changes in ambulatory function, we retrospectively evaluated psoas muscle size and limb-length discrepancy (LLD) before and after treatment and their correlation with objective functional outcomes. T1-weighted MR images were evaluated at three intervals for 12 pelvic sarcoma patients following interval hemipelvectomy without reconstruction. Correlations between the measured changes and improvements in Timed Up and Go test (TUG) and gait speed outcomes were assessed both independently and using a stepwise multivariate regression model. Increased ipsilesional psoas muscle size from three months postoperatively to latest follow-up was positively correlated with gait speed improvement (r = 0.66). LLD at three months postoperatively was negatively correlated with both TUG (r = -0.71) and gait speed (r = -0.61). This study suggests that psoas muscle strengthening and minimizing initial LLD will achieve the greatest improvements in ambulatory function. LLD and change in hip musculature remain substantial prognostic factors for achieving the best clinical outcomes after internal hemipelvectomy. Changes in psoas size were correlated with the amount of functional improvement. Several patients in this study did not return to their preoperative ipsilateral psoas size, indicating that monitoring changes in psoas size could be a beneficial rehabilitation strategy.


Assuntos
Hemipelvectomia , Sarcoma , Humanos , Equilíbrio Postural , Músculos Psoas/diagnóstico por imagem , Estudos Retrospectivos , Estudos de Tempo e Movimento
7.
Front Bioeng Biotechnol ; 10: 964359, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36582837

RESUMO

One of the surgical treatments for pelvic sarcoma is the restoration of hip function with a custom pelvic prosthesis after cancerous tumor removal. The orthopedic oncologist and orthopedic implant company must make numerous often subjective decisions regarding the design of the pelvic surgery and custom pelvic prosthesis. Using personalized musculoskeletal computer models to predict post-surgery walking function and custom pelvic prosthesis loading is an emerging method for making surgical and custom prosthesis design decisions in a more objective manner. Such predictions would necessitate the estimation of forces generated by muscles spanning the lower trunk and all joints of the lower extremities. However, estimating trunk and leg muscle forces simultaneously during walking based on electromyography (EMG) data remains challenging due to the limited number of EMG channels typically used for measurement of leg muscle activity. This study developed a computational method for estimating unmeasured trunk muscle activations during walking using lower extremity muscle synergies. To facilitate the calibration of an EMG-driven model and the estimation of leg muscle activations, EMG data were collected from each leg. Using non-negative matrix factorization, muscle synergies were extracted from activations of leg muscles. On the basis of previous studies, it was hypothesized that the time-varying synergy activations were shared between the trunk and leg muscles. The synergy weights required to reconstruct the trunk muscle activations were determined through optimization. The accuracy of the synergy-based method was dependent on the number of synergies and optimization formulation. With seven synergies and an increased level of activation minimization, the estimated activations of the erector spinae were strongly correlated with their measured activity. This study created a custom full-body model by combining two existing musculoskeletal models. The model was further modified and heavily personalized to represent various aspects of the pelvic sarcoma patient, all of which contributed to the estimation of trunk muscle activations. This proposed method can facilitate the prediction of post-surgery walking function and pelvic prosthesis loading, as well as provide objective evaluations for surgical and prosthesis design decisions.

8.
Front Bioeng Biotechnol ; 10: 855870, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246391

RESUMO

An emerging option for internal hemipelvectomy surgery is custom prosthesis reconstruction. This option typically recapitulates the resected pelvic bony anatomy with the goal of maximizing post-surgery walking function while minimizing recovery time. However, the current custom prosthesis design process does not account for the patient's post-surgery prosthesis and bone loading patterns, nor can it predict how different surgical or rehabilitation decisions (e.g., retention or removal of the psoas muscle, strengthening the psoas) will affect prosthesis durability and post-surgery walking function. These factors may contribute to the high observed failure rate for custom pelvic prostheses, discouraging orthopedic oncologists from pursuing this valuable treatment option. One possibility for addressing this problem is to simulate the complex interaction between surgical and rehabilitation decisions, post-surgery walking function, and custom pelvic prosthesis design using patient-specific neuromusculoskeletal models. As a first step toward developing this capability, this study used a personalized neuromusculoskeletal model and direct collocation optimal control to predict the impact of ipsilateral psoas muscle strength on walking function following internal hemipelvectomy with custom prosthesis reconstruction. The influence of the psoas muscle was targeted since retention of this important muscle can be surgically demanding for certain tumors, requiring additional time in the operating room. The post-surgery walking predictions emulated the most common surgical scenario encountered at MD Anderson Cancer Center in Houston. Simulated post-surgery psoas strengths included 0% (removed), 50% (weakened), 100% (maintained), and 150% (strengthened) of the pre-surgery value. However, only the 100% and 150% cases successfully converged to a complete gait cycle. When post-surgery psoas strength was maintained, clinical gait features were predicted, including increased stance width, decreased stride length, and increased lumbar bending towards the operated side. Furthermore, when post-surgery psoas strength was increased, stance width and stride length returned to pre-surgery values. These results suggest that retention and strengthening of the psoas muscle on the operated side may be important for maximizing post-surgery walking function. If future studies can validate this computational approach using post-surgery experimental walking data, the approach may eventually influence surgical, rehabilitation, and custom prosthesis design decisions to meet the unique clinical needs of pelvic sarcoma patients.

9.
Front Bioeng Biotechnol ; 10: 962959, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159690

RESUMO

Subject-specific electromyography (EMG)-driven musculoskeletal models that predict muscle forces have the potential to enhance our knowledge of internal biomechanics and neural control of normal and pathological movements. However, technical gaps in experimental EMG measurement, such as inaccessibility of deep muscles using surface electrodes or an insufficient number of EMG channels, can cause difficulties in collecting EMG data from muscles that contribute substantially to joint moments, thereby hindering the ability of EMG-driven models to predict muscle forces and joint moments reliably. This study presents a novel computational approach to address the problem of a small number of missing EMG signals during EMG-driven model calibration. The approach (henceforth called "synergy extrapolation" or SynX) linearly combines time-varying synergy excitations extracted from measured muscle excitations to estimate 1) unmeasured muscle excitations and 2) residual muscle excitations added to measured muscle excitations. Time-invariant synergy vector weights defining the contribution of each measured synergy excitation to all unmeasured and residual muscle excitations were calibrated simultaneously with EMG-driven model parameters through a multi-objective optimization. The cost function was formulated as a trade-off between minimizing joint moment tracking errors and minimizing unmeasured and residual muscle activation magnitudes. We developed and evaluated the approach by treating a measured fine wire EMG signal (iliopsoas) as though it were "unmeasured" for walking datasets collected from two individuals post-stroke-one high functioning and one low functioning. How well unmeasured muscle excitations and activations could be predicted with SynX was assessed quantitatively for different combinations of SynX methodological choices, including the number of synergies and categories of variability in unmeasured and residual synergy vector weights across trials. The two best methodological combinations were identified, one for analyzing experimental walking trials used for calibration and another for analyzing experimental walking trials not used for calibration or for predicting new walking motions computationally. Both methodological combinations consistently provided reliable and efficient estimates of unmeasured muscle excitations and activations, muscle forces, and joint moments across both subjects. This approach broadens the possibilities for EMG-driven calibration of muscle-tendon properties in personalized neuromusculoskeletal models and may eventually contribute to the design of personalized treatments for mobility impairments.

10.
J Orthop Res ; 40(3): 644-653, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33914952

RESUMO

Limb-salvaging hemipelvectomy surgeries involving allograft or custom prosthesis reconstruction require high quality remaining pelvic bone for adequate device fixation. Modeling studies of custom pelvis prosthesis designs typically mirror contralateral pelvic bone material properties to the ipsilateral pelvis. However, the extent of bone material property and geometric symmetry, and thus the appropriateness of mirroring, remains unknown and should be considered when designing or analyzing the performance of pelvic prostheses. This study investigates preoperative differences between ipsilateral and contralateral pelvic bone for patients with a pelvic sarcoma. Computed tomography (CT) data were obtained retrospectively from eight patients with a pelvic sarcoma. Subject-specific computational models of the pelvic bones were constructed from the CT data. Bilateral asymmetry of bone material properties and cross-sectional areas between the ipsilateral and contralateral hemipelvis were quantified at points adjacent to the pelvic sarcoma. Large bilateral asymmetry (>20%) in trabecular but not cortical bone density was observed within 20 mm of the tumor location. Differences in trabecular bone density typically declined with increased distance from the tumor. The greatest bilateral difference in cross-sectional area occurred within 10 mm of the tumor boundary for three patients and within 40 mm from the tumor site for four patients. Our results suggest that pelvic sarcomas can cause significant bilateral asymmetries in trabecular bone density for patients with a pelvic sarcoma. These differences should be taken into account when designing custom implants for this patient population.


Assuntos
Neoplasias Ósseas , Ossos Pélvicos , Sarcoma , Densidade Óssea , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/patologia , Neoplasias Ósseas/cirurgia , Humanos , Ossos Pélvicos/diagnóstico por imagem , Ossos Pélvicos/cirurgia , Estudos Retrospectivos , Sarcoma/diagnóstico por imagem , Tomografia Computadorizada por Raios X
11.
Artigo em Inglês | MEDLINE | ID: mdl-34618674

RESUMO

Evidence exists that changes in composition, timing, and number of muscle synergies can be correlated to functional changes resulting from neurological injury. These changes can also serve as an indicator of level of motor impairment. As such, synergy analysis can be used as an assessment tool for robotic rehabilitation. However, it is unclear whether using a rehabilitation robot to isolate limb movements during training affects the subject's muscle synergies, which would affect synergy-based assessments. In this case study, electromyographic (EMG) data were collected to analyze muscle synergies generated during single degree-of-freedom (DoF) elbow and wrist movements performed by a single healthy subject in a four DoF robotic exoskeleton. For each trial, the subject was instructed to move a single DoF from a neutral position out to a target and back while the remaining DoFs were held in a neutral position by either the robot (constrained) or the subject (unconstrained). Four factorization methods were used to calculate muscle synergies for both types of trials: concatenation, averaging, single trials, and bootstrapping. The number of synergies was chosen to achieve 90% global variability accounted for. Our preliminary results indicate that muscle synergy composition and timing were highly similar for constrained and unconstrained trials, though some differences between the four factorization methods existed. These differences could be explained by higher trial-to-trial EMG variability for the unconstrained trials. These results suggest that using a robotic exoskeleton to constrain limb movements during robotic training may not alter a subject's muscle synergies, at least for healthy subjects.


Assuntos
Exoesqueleto Energizado , Eletromiografia , Humanos , Movimento , Músculo Esquelético , Extremidade Superior
12.
Med Eng Phys ; 96: 1-12, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34565547

RESUMO

Patient-specific finite element (FE) models of bone require the assignment of heterogeneous material properties extracted from the subject's computed tomography (CT) images. Though node-based (NB) and element-based (EB) material mapping methods (MMMs) have been proposed, the sensitivity and convergence of FE models to MMM for varying mesh sizes are not well understood. In this work, CT-derived and synthetic bone material data were used to evaluate the effect of MMM on results from FE analyses. Pelvic trabecular bone data was extracted from CT images of six subjects, while synthetic data were created to resemble trabecular bone properties. The numerical convergence of FE bone models using different MMMs were evaluated for strain energy, von-Mises stress, and strain. NB and EB MMMs both demonstrated good convergence regarding total strain energy, with the EB method having a slight edge over the NB. However, at the local level (e.g., maximum stress and strain), FE results were sensitive to the field type, MMM, and the FE mesh size. The EB method exhibited superior performance in finer meshes relative to the voxel size. The NB method converged better than did the EB method for coarser meshes. These findings may lead to higher-fidelity patient-specific FE bone models.


Assuntos
Osso Esponjoso , Pelve , Osso e Ossos , Osso Esponjoso/diagnóstico por imagem , Análise de Elementos Finitos , Humanos , Modelos Biológicos , Estresse Mecânico , Tomografia Computadorizada por Raios X
13.
Front Neurorobot ; 15: 748148, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35140596

RESUMO

Gait restoration of individuals with spinal cord injury can be partially achieved using active orthoses or exoskeletons. To improve the walking ability of each patient as much as possible, it is important to personalize the parameters that define the device actuation. This study investigates whether using an optimal control-based predictive simulation approach to personalize pre-defined knee trajectory parameters for an active knee-ankle-foot orthosis (KAFO) used by spinal cord injured (SCI) subjects could potentially be an alternative to the current trial-and-error approach. We aimed to find the knee angle trajectory that produced an improved orthosis-assisted gait pattern compared to the one with passive support (locked knee). We collected experimental data from a healthy subject assisted by crutches and KAFOs (with locked knee and with knee flexion assistance) and from an SCI subject assisted by crutches and KAFOs (with locked knee). First, we compared different cost functions and chose the one that produced results closest to experimental locked knee walking for the healthy subject (angular coordinates mean RMSE was 5.74°). For this subject, we predicted crutch-orthosis-assisted walking imposing a pre-defined knee angle trajectory for different maximum knee flexion parameter values, and results were evaluated against experimental data using that same pre-defined knee flexion trajectories in the real device. Finally, using the selected cost function, gait cycles for different knee flexion assistance were predicted for an SCI subject. We evaluated changes in four clinically relevant parameters: foot clearance, stride length, cadence, and hip flexion ROM. Simulations for different values of maximum knee flexion showed variations of these parameters that were consistent with experimental data for the healthy subject (e.g., foot clearance increased/decreased similarly in experimental and predicted motions) and were reasonable for the SCI subject (e.g., maximum parameter values were found for moderate knee flexion). Although more research is needed before this method can be applied to choose optimal active orthosis controller parameters for specific subjects, these findings suggest that optimal control prediction of crutch-orthosis-assisted walking using biomechanical models might be used in place of the trial-and-error method to select the best maximum knee flexion angle during gait for a specific SCI subject.

14.
Commun Med (Lond) ; 1: 6, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35602226

RESUMO

Background: Despite favourable outcomes relatively few surgeons offer high tibial osteotomy (HTO) as a treatment option for early knee osteoarthritis, mainly due to the difficulty of achieving planned correction and reported soft tissue irritation around the plate used to stablise the osteotomy. To compare the mechanical safety of a new personalised 3D printed high tibial osteotomy (HTO) device, created to overcome these issues, with an existing generic device, a case-control in silico virtual clinical trial was conducted. Methods: Twenty-eight knee osteoarthritis patients underwent computed tomography (CT) scanning to create a virtual cohort; the cohort was duplicated to form two arms, Generic and Personalised, on which virtual HTO was performed. Finite element analysis was performed to calculate the stresses in the plates arising from simulated physiological activities at three healing stages. The odds ratio indicative of the relative risk of fatigue failure of the HTO plates between the personalised and generic arms was obtained from a multi-level logistic model. Results: Here we show, at 12 weeks post-surgery, the odds ratio indicative of the relative risk of fatigue failure was 0.14 (95%CI 0.01 to 2.73, p = 0.20). Conclusions: This novel (to the best of our knowledge) in silico trial, comparing the mechanical safety of a new personalised 3D printed high tibial osteotomy device with an existing generic device, shows that there is no increased risk of failure for the new personalised design compared to the existing generic commonly used device. Personalised high tibial osteotomy can overcome the main technical barriers for this type of surgery, our findings support the case for using this technology for treating early knee osteoarthritis.

15.
Commun Med (Lond) ; 1(1): 6, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36737534

RESUMO

BACKGROUND: Despite favourable outcomes relatively few surgeons offer high tibial osteotomy (HTO) as a treatment option for early knee osteoarthritis, mainly due to the difficulty of achieving planned correction and reported soft tissue irritation around the plate used to stablise the osteotomy. To compare the mechanical safety of a new personalised 3D printed high tibial osteotomy (HTO) device, created to overcome these issues, with an existing generic device, a case-control in silico virtual clinical trial was conducted. METHODS: Twenty-eight knee osteoarthritis patients underwent computed tomography (CT) scanning to create a virtual cohort; the cohort was duplicated to form two arms, Generic and Personalised, on which virtual HTO was performed. Finite element analysis was performed to calculate the stresses in the plates arising from simulated physiological activities at three healing stages. The odds ratio indicative of the relative risk of fatigue failure of the HTO plates between the personalised and generic arms was obtained from a multi-level logistic model. RESULTS: Here we show, at 12 weeks post-surgery, the odds ratio indicative of the relative risk of fatigue failure was 0.14 (95%CI 0.01 to 2.73, p = 0.20). CONCLUSIONS: This novel (to the best of our knowledge) in silico trial, comparing the mechanical safety of a new personalised 3D printed high tibial osteotomy device with an existing generic device, shows that there is no increased risk of failure for the new personalised design compared to the existing generic commonly used device. Personalised high tibial osteotomy can overcome the main technical barriers for this type of surgery, our findings support the case for using this technology for treating early knee osteoarthritis.


Surgical treatment to realign the knee, called a high tibial osteotomy, is effective at relieving symptoms of knee osteoarthritis but the operation is difficult. A new personalised treatment with simpler surgery has been designed. The aim of this study was to investigate the safety of the new personalised treatment compared to the standard treatment. For the first time, a detailed computer simulation clinical trial was performed, using imaging data from 28 real patients. The computer simulation compared the risk of the implant failure between the personalised and standard treatments. The personalised treatment did not have a higher risk of implant failure than standard treatment. This supports further clinical studies looking at the benefits of personalised over standard realignment surgery. The personalised treatment has the potential to allow much more widespread use of realignment surgery to treat early knee osteoarthritis.

16.
Front Comput Neurosci ; 14: 588943, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343322

RESUMO

Electromyography (EMG)-driven musculoskeletal modeling relies on high-quality measurements of muscle electrical activity to estimate muscle forces. However, a critical challenge for practical deployment of this approach is missing EMG data from muscles that contribute substantially to joint moments. This situation may arise due to either the inability to measure deep muscles with surface electrodes or the lack of a sufficient number of EMG channels. Muscle synergy analysis (MSA) is a dimensionality reduction approach that decomposes a large number of muscle excitations into a small number of time-varying synergy excitations along with time-invariant synergy weights that define the contribution of each synergy excitation to all muscle excitations. This study evaluates how well missing muscle excitations can be predicted using synergy excitations extracted from muscles with available EMG data (henceforth called "synergy extrapolation" or SynX). The method was evaluated using a gait data set collected from a stroke survivor walking on an instrumented treadmill at self-selected and fastest-comfortable speeds. The evaluation process started with full calibration of a lower-body EMG-driven model using 16 measured EMG channels (collected using surface and fine wire electrodes) per leg. One fine wire EMG channel (either iliopsoas or adductor longus) was then treated as unmeasured. The synergy weights associated with the unmeasured muscle excitation were predicted by solving a nonlinear optimization problem where the errors between inverse dynamics and EMG-driven joint moments were minimized. The prediction process was performed for different synergy analysis algorithms (principal component analysis and non-negative matrix factorization), EMG normalization methods, and numbers of synergies. SynX performance was most influenced by the choice of synergy analysis algorithm and number of synergies. Principal component analysis with five or six synergies consistently predicted unmeasured muscle excitations the most accurately and with the greatest robustness to EMG normalization method. Furthermore, the associated joint moment matching accuracy was comparable to that produced by initial EMG-driven model calibration using all 16 EMG channels per leg. SynX may facilitate the assessment of human neuromuscular control and biomechanics when important EMG signals are missing.

17.
Front Bioeng Biotechnol ; 8: 588925, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324623

RESUMO

Assessment of metabolic cost as a metric for human performance has expanded across various fields within the scientific, clinical, and engineering communities. As an alternative to measuring metabolic cost experimentally, musculoskeletal models incorporating metabolic cost models have been developed. However, to utilize these models for practical applications, the accuracy of their metabolic cost predictions requires improvement. Previous studies have reported the benefits of using personalized musculoskeletal models for various applications, yet no study has evaluated how model personalization affects metabolic cost estimation. This study investigated the effect of musculoskeletal model personalization on estimates of metabolic cost of transport (CoT) during post-stroke walking using three commonly used metabolic cost models. We analyzed walking data previously collected from two male stroke survivors with right-sided hemiparesis. The three metabolic cost models were implemented within three musculoskeletal modeling approaches involving different levels of personalization. The first approach used a scaled generic OpenSim model and found muscle activations via static optimization (SOGen). The second approach used a personalized electromyographic (EMG)-driven musculoskeletal model with personalized functional axes but found muscle activations via static optimization (SOCal). The third approach used the same personalized EMG-driven model but calculated muscle activations directly from EMG data (EMGCal). For each approach, the muscle activation estimates were used to calculate each subject's CoT at different gait speeds using three metabolic cost models (Umberger et al., 2003; Bhargava et al., 2004; Umberger, 2010). The calculated CoT values were compared with published CoT data as a function of walking speed, step length asymmetry, stance time asymmetry, double support time asymmetry, and severity of motor impairment (i.e., Fugl-Meyer score). Overall, only SOCal and EMGCal with the Bhargava metabolic cost model were able to reproduce accurately published experimental trends between CoT and various clinical measures of walking asymmetry post-stroke. Tuning of the parameters in the different metabolic cost models could potentially resolve the observed CoT magnitude differences between model predictions and experimental measurements. Realistic CoT predictions may allow researchers to predict human performance, surgical outcomes, and rehabilitation outcomes reliably using computational simulations.

19.
Med Eng Phys ; 85: 35-47, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33081962

RESUMO

Treatment design for musculoskeletal disorders using in silico patient-specific dynamic simulations is becoming a clinical possibility. However, these simulations are sensitive to model parameter values that are difficult to measure experimentally, and the influence of uncertainties in these parameter values on the accuracy of estimated knee contact forces remains unknown. This study evaluates which musculoskeletal model parameters have the greatest influence on estimating accurate knee contact forces during walking. We performed the evaluation using a two-level optimization algorithm where musculoskeletal model parameter values were adjusted in the outer level and muscle activations were estimated in the inner level. We tested the algorithm with different sets of design variables (combinations of optimal muscle fiber lengths, tendon slack lengths, and muscle moment arm offsets) resulting in nine different optimization problems. The most accurate lateral knee contact force predictions were obtained when tendon slack lengths and moment arm offsets were adjusted simultaneously, and the most accurate medial knee contact force estimations were obtained when all three types of parameters were adjusted together. Inclusion of moment arm offsets as design variables was more important than including either tendon slack lengths or optimal muscle fiber lengths alone to obtain accurate medial and lateral knee contact force predictions. These results provide guidance on which musculoskeletal model parameter values should be calibrated when seeking to predict in vivo knee contact forces accurately.


Assuntos
Marcha , Caminhada , Fenômenos Biomecânicos , Humanos , Joelho , Articulação do Joelho , Modelos Biológicos , Músculo Esquelético
20.
Front Comput Neurosci ; 14: 54, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754024

RESUMO

Determination of muscle forces during motion can help to understand motor control, assess pathological movement, diagnose neuromuscular disorders, or estimate joint loads. Difficulty of in vivo measurement made computational analysis become a common alternative in which, as several muscles serve each degree of freedom, the muscle redundancy problem must be solved. Unlike static optimization (SO), synergy optimization (SynO) couples muscle activations across all time frames, thereby altering estimated muscle co-contraction. This study explores whether the use of a muscle synergy structure within an SO framework improves prediction of muscle activations during walking. A motion/force/electromyography (EMG) gait analysis was performed on five healthy subjects. A musculoskeletal model of the right leg actuated by 43 Hill-type muscles was scaled to each subject and used to calculate joint moments, muscle-tendon kinematics, and moment arms. Muscle activations were then estimated using SynO with two to six synergies and traditional SO, and these estimates were compared with EMG measurements. Synergy optimization neither improved SO prediction of experimental activation patterns nor provided SO exact matching of joint moments. Finally, synergy analysis was performed on SO estimated activations, being found that the reconstructed activations produced poor matching of experimental activations and joint moments. As conclusion, it can be said that, although SynO did not improve prediction of muscle activations during gait, its reduced dimensional control space could be beneficial for applications such as functional electrical stimulation or motion control and prediction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...