Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Neurosci ; 50(10): 3599-3613, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31410900

RESUMO

Non-invasive reversible perturbation techniques of brain output such as continuous theta burst stimulation (cTBS), commonly used to modulate cortical excitability in humans, allow investigation of possible roles in functional recovery played by distinct intact cortical areas following stroke. To evaluate the potential of cTBS, the behavioural effects of this non-invasive transient perturbation of the hand representation of the primary motor cortex (M1) in non-human primates (two adult macaques) were compared with an invasive focal transient inactivation based on intracortical microinfusion of GABA-A agonist muscimol. The effects on the contralateral arm produced by cTBS or muscimol were directly compared based on a manual dexterity task performed by the monkeys, the "reach and grasp" drawer task, allowing quantitative assessment of the grip force produced between the thumb and index finger and exerted on the drawer's knob. cTBS only induced modest to moderate behavioural effects, with substantial variability on manual dexterity whereas the intracortical muscimol microinfusion completely impaired manual dexterity, producing a strong and clear cortical inhibition of the M1 hand area. In contrast, cTBS induced mixed inhibitory and facilitatory/excitatory perturbations of M1, though with predominant inhibition. Although cTBS impacted on manual dexterity, its effects appear too limited and variable in order to use it as a reliable proof of cortical vicariation mechanism (cortical area replacing another one) underlying functional recovery following a cortical lesion in the motor control domain, in contrast to potent pharmacological block generated by muscimol infusion, whose application is though limited to an animal model such as non-human primate.


Assuntos
Estimulação Encefálica Profunda/métodos , Mãos/fisiologia , Córtex Motor/fisiologia , Destreza Motora , Ritmo Teta , Animais , Estimulação Encefálica Profunda/efeitos adversos , Feminino , Agonistas de Receptores de GABA-A/farmacologia , Macaca fascicularis , Masculino , Córtex Motor/efeitos dos fármacos , Muscimol/farmacologia
2.
Neurorehabil Neural Repair ; 33(7): 553-567, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31170868

RESUMO

Background. Autologous neural cell ecosystem (ANCE) transplantation improves motor recovery in MPTP monkeys. These motor symptoms were assessed using semi-quantitative clinical rating scales, widely used in many studies. However, limitations in terms of sensitivity, combined with relatively subjective assessment of their different items, make inter-study comparisons difficult to achieve. Objective. The aim of this study was to quantify the impact of MPTP intoxication in macaque monkeys on manual dexterity and assess whether ANCE can contribute to functional recovery. Methods. Four animals were trained to perform 2 manual dexterity tasks. After reaching a motor performance plateau, the animals were subjected to an MPTP lesion. After the occurrence of a spontaneous functional recovery plateau, all 4 animals were subjected to ANCE transplantation. Results. Two of 4 animals underwent a full spontaneous recovery before the ANCE transplantation, whereas the 2 other animals (symptomatic) presented moderate to severe Parkinson's disease (PD)-like symptoms affecting manual dexterity. The time to grasp small objects using the precision grip increased in these 2 animals. After ANCE transplantation, the 2 symptomatic animals underwent a significant functional recovery, reflected by a decrease in time to execute the different tasks, as compared with the post-lesion phase. Conclusions. Manual dexterity is affected in symptomatic MPTP monkeys. The 2 manual dexterity tasks reported here as pilot are pertinent to quantify PD symptoms and reliably assess a treatment in MPTP monkeys, such as the present ANCE transplantation, to be confirmed in a larger cohort of animals before future clinical applications.


Assuntos
Comportamento Animal/fisiologia , Transplante de Células , Intoxicação por MPTP/fisiopatologia , Intoxicação por MPTP/terapia , Neostriado/fisiopatologia , Recuperação de Função Fisiológica/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Macaca fascicularis , Destreza Motora , Neostriado/cirurgia , Projetos Piloto , Transplante Autólogo
3.
Front Neuroanat ; 13: 50, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191260

RESUMO

The corticotectal projections, together with the corticobulbar (corticoreticular) projections, work in parallel with the corticospinal tract (CST) to influence motoneurons in the spinal cord both directly and indirectly via the brainstem descending pathways. The tectospinal tract (TST) originates in the deep layers of the superior colliculus. In the present study, we analyzed the corticotectal projections from two motor cortical areas, namely the premotor cortex (PM) and the primary motor cortex (M1) in eight macaque monkeys subjected to either a cortical lesion of the hand area in M1 (n = 4) or Parkinson's disease-like symptoms PD (n = 4). A subgroup of monkeys with cortical lesion was subjected to anti-Nogo-A antibody treatment whereas all PD monkeys were transplanted with Autologous Neural Cell Ecosystems (ANCEs). The anterograde tracer BDA was used to label the axonal boutons both en passant and terminaux in the ipsilateral superior colliculus. Individual axonal boutons were charted in the different layers of the superior colliculus. In intact animals, we previously observed that corticotectal projections were denser when originating from PM than from M1. In the present M1 lesioned monkeys, as compared to intact ones the corticotectal projection originating from PM was decreased when treated with anti-Nogo-A antibody but not in untreated monkeys. In PD-like symptoms' monkeys, on the other hand, there was no consistent change affecting the corticotectal projection as compared to intact monkeys. The present pilot study overall suggests that the corticotectal projection is less affected by M1 lesion or PD symptoms than the corticoreticular projection previously reported in the same animals.

4.
Eur J Neurosci ; 48(4): 2050-2070, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30019432

RESUMO

Functional recovery from central nervous system injury is likely to be partly due to a rearrangement of neural circuits. In this context, the corticobulbar (corticoreticular) motor projections onto different nuclei of the ponto-medullary reticular formation (PMRF) were investigated in 13 adult macaque monkeys after either, primary motor cortex injury (MCI) in the hand area, or spinal cord injury (SCI) or Parkinson's disease-like lesions of the nigro-striatal dopaminergic system (PD). A subgroup of animals in both MCI and SCI groups was treated with neurite growth promoting anti-Nogo-A antibodies, whereas all PD animals were treated with autologous neural cell ecosystems (ANCE). The anterograde tracer BDA was injected either in the premotor cortex (PM) or in the primary motor cortex (M1) to label and quantify corticobulbar axonal boutons terminaux and en passant in PMRF. As compared to intact animals, after MCI the density of corticobulbar projections from PM was strongly reduced but maintained their laterality dominance (ipsilateral), both in the presence or absence of anti-Nogo-A antibody treatment. In contrast, the density of corticobulbar projections from M1 was increased following opposite hemi-section of the cervical cord (at C7 level) and anti-Nogo-A antibody treatment, with maintenance of contralateral laterality bias. In PD monkeys, the density of corticobulbar projections from PM was strongly reduced, as well as that from M1, but to a lesser extent. In conclusion, the densities of corticobulbar projections from PM or M1 were affected in a variable manner, depending on the type of lesion/pathology and the treatment aimed to enhance functional recovery.


Assuntos
Lesões Encefálicas/patologia , Córtex Motor/lesões , Córtex Motor/patologia , Doença de Parkinson/patologia , Tratos Piramidais/patologia , Formação Reticular/patologia , Rombencéfalo/patologia , Traumatismos da Medula Espinal/patologia , Animais , Anticorpos Bloqueadores/administração & dosagem , Lesões Encefálicas/terapia , Transplante de Células , Modelos Animais de Doenças , Feminino , Mãos/patologia , Macaca fascicularis , Masculino , Técnicas de Rastreamento Neuroanatômico , Proteínas Nogo/imunologia , Doença de Parkinson/terapia , Traumatismos da Medula Espinal/terapia , Transplante Autólogo
5.
Eur J Neurosci ; 46(8): 2406-2415, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28921678

RESUMO

The corticotectal projection from cortical motor areas is one of several descending pathways involved in the indirect control of spinal motoneurons. In non-human primates, previous studies reported that cortical projections to the superior colliculus (SC) originated from the premotor cortex (PM) and the primary motor cortex, whereas no projection originated from the supplementary motor area (SMA). The aim of the present study was to investigate and compare the properties of corticotectal projections originating from these three cortical motor areas in intact adult macaques (n = 9). The anterograde tracer biotinylated dextran amine was injected into one of these cortical areas in each animal. Individual axonal boutons, both en passant and terminaux, were charted and counted in the different layers of the ipsilateral SC. The data confirmed the presence of strong corticotectal projections from the PM. A new observation was that strong corticotectal projections were also found to originate from the SMA (its proper division). The corticotectal projection from the primary motor cortex was quantitatively less strong than that from either the premotor or SMAs. The corticotectal projection from each motor area was directed mainly to the deep layer of the SC, although its intermediate layer was also a consistent target of fairly dense terminations. The strong corticotectal projections from non-primary motor areas are in position to influence the preparation and planning of voluntary movements.


Assuntos
Córtex Motor/fisiologia , Tratos Piramidais/fisiologia , Colículos Superiores/fisiologia , Animais , Movimentos Oculares , Feminino , Lateralidade Funcional , Macaca fascicularis , Macaca mulatta , Masculino , Córtex Motor/citologia , Tratos Piramidais/citologia , Colículos Superiores/citologia
6.
Eur J Neurosci ; 45(11): 1379-1395, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28394483

RESUMO

Corticospinal and corticobulbar descending pathways act in parallel with brainstem systems, such as the reticulospinal tract, to ensure the control of voluntary movements via direct or indirect influences onto spinal motoneurons. The aim of this study was to investigate the corticobulbar projections from distinct motor cortical areas onto different nuclei of the reticular formation. Seven adult macaque monkeys were analysed for the location of corticobulbar axonal boutons, and one monkey for reticulospinal neurons' location. The anterograde tracer BDA was injected in the premotor cortex (PM), in the primary motor cortex (M1) or in the supplementary motor area (SMA), in 3, 3 and 1 monkeys respectively. BDA anterograde labelling of corticobulbar axons were analysed on brainstem histological sections and overlapped with adjacent Nissl-stained sections for cytoarchitecture. One adult monkey was analysed for retrograde CB tracer injected in C5-C8 hemispinal cord to visualise reticulospinal neurons. The corticobulbar axons formed bilateral terminal fields with boutons terminaux and en passant, which were quantified in various nuclei belonging to the Ponto-Medullary Reticular Formation (PMRF). The corticobulbar projections from both PM and SMA tended to end mainly ipsilaterally in PMRF, but contralaterally when originating from M1. Furthermore, the corticobulbar projection was less dense when originating from M1 than from non-primary motor areas (PM, SMA). The main nuclei of bouton terminals corresponded to the regions where reticulospinal neurons were located with CB retrograde tracing. In conclusion, the corticobulbar projection differs according to the motor cortical area of origin in density and laterality.


Assuntos
Córtex Motor/citologia , Tratos Piramidais/citologia , Formação Reticular/citologia , Animais , Feminino , Macaca fascicularis , Masculino , Córtex Motor/fisiologia , Terminações Pré-Sinápticas/fisiologia , Tratos Piramidais/fisiologia , Formação Reticular/fisiologia
7.
Brain Behav ; 3(5): 575-95, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24392278

RESUMO

Background The present study aimed to determine and confront hand preference (hand chosen in priority to perform a manual dexterity task) and hand dominance (hand with best motor performance) in eight macaques (Macaca fascicularis) and in 20 human subjects (10 left-handers and 10 right-handers). Methods Four manual dexterity tests have been executed by the monkeys, over several weeks during learning and stable performance phases (in controlled body position): the modified Brinkman board, the reach and grasp drawer, the tube and the bimanual board tasks. Three behavioral tests, adapted versions from the monkeys tasks (modified Brinkman board, tube and bimanual board tasks), as well as a handedness questionnaire, have been conducted in human subjects. Results In monkeys, there was a large disparity across individuals and motor tasks. For hand dominance, two monkeys were rather right lateralized, three monkeys rather left lateralized, whereas in three monkeys, the different parameters measured were not consistent. For hand preference, none of the eight monkeys exhibited a homogeneous lateralization across the four motor tasks. Macaca fascicularis do not exhibit a clear hand preference. Furthermore, hand preference often changed with task repetition, both during training and plateau phases. For human subjects, the hand preference mostly followed the self-assessment of lateralization by the subjects and the questionnaire (in the latter, right-handers were more lateralized than left-handers), except a few discrepancies based on the tube task. There was no hand dominance in seven right-handers (the other three performed better with the right hand) and in four left-handers. Five left-handers showed left-hand dominance, whereas surprisingly, one left-hander performed better with the right hand. In the modified Brinkman board task, females performed better than males, right-handers better than left-handers. Conclusions The present study argues for a distinction between hand preference and hand dominance, especially in macaque monkeys.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...