Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0302035, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38669257

RESUMO

Oceanic delphinids that occur in and around Navy operational areas are regularly exposed to intense military sonar broadcast within the frequency range of their hearing. However, empirically measuring the impact of sonar on the behavior of highly social, free-ranging dolphins is challenging. Additionally, baseline variability or the frequency of vocal state-switching among social oceanic dolphins during undisturbed conditions is lacking, making it difficult to attribute changes in vocal behavior to anthropogenic disturbance. Using a network of drifting acoustic buoys in controlled exposure experiments, we investigated the effects of mid-frequency (3-4 kHz) active sonar (MFAS) on whistle production in short-beaked (Delphinus delphis delphis) and long-beaked common dolphins (Delphinus delphis bairdii) in southern California. Given the complexity of acoustic behavior exhibited by these group-living animals, we conducted our response analysis over varying temporal windows (10 min- 5 s) to describe both longer-term and instantaneous changes in sound production. We found that common dolphins exhibited acute and pronounced changes in whistle rate in the 5 s following exposure to simulated Navy MFAS. This response was sustained throughout sequential MFAS exposures within experiments simulating operational conditions, suggesting that dolphins may not habituate to this disturbance. These results indicate that common dolphins exhibit brief yet clearly detectable acoustic responses to MFAS. They also highlight how variable temporal analysis windows-tuned to key aspects of baseline vocal behavior as well as experimental parameters related to MFAS exposure-enable the detection of behavioral responses. We suggest future work with oceanic delphinids explore baseline vocal rates a-priori and use information on the rate of change in vocal behavior to inform the analysis time window over which behavioral responses are measured.


Assuntos
Vocalização Animal , Animais , Vocalização Animal/fisiologia , Golfinhos Comuns/fisiologia , Acústica , Som
2.
R Soc Open Sci ; 10(12): 231775, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38094262

RESUMO

The effect of active sonars on marine mammal behaviour is a topic of considerable interest and scientific investigation. Some whales, including the largest species (blue whales, Balaenoptera musculus), can be impacted by mid-frequency (1-10 kHz) military sonars. Here we apply complementary experimental methods to provide the first experimentally controlled measurements of behavioural responses to military sonar and similar stimuli for a related endangered species, fin whales (Balaenoptera physalus). Analytical methods include: (i) principal component analysis paired with generalized additive mixed models; (ii) hidden Markov models; and (iii) structured expert elicitation using response severity metrics. These approaches provide complementary perspectives on the nature of potential changes within and across individuals. Behavioural changes were detected in five of 15 whales during controlled exposure experiments using mid-frequency active sonar or pseudorandom noise of similar frequency, duration and source and received level. No changes were detected during six control (no noise) sequences. Overall responses were more limited in occurrence, severity and duration than in blue whales and were less dependent upon contextual aspects of exposure and more contingent upon exposure received level. Quantifying the factors influencing marine mammal responses to sonar is critical in assessing and mitigating future impacts.

3.
J Acoust Soc Am ; 152(4): 2277, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36319244

RESUMO

A single-hydrophone ocean glider was deployed within a cabled hydrophone array to demonstrate a framework for estimating population density of fin whales (Balaenoptera physalus) from a passive acoustic glider. The array was used to estimate tracks of acoustically active whales. These tracks became detection trials to model the detection function for glider-recorded 360-s windows containing fin whale 20-Hz pulses using a generalized additive model. Detection probability was dependent on both horizontal distance and low-frequency glider flow noise. At the median 40-Hz spectral level of 97 dB re 1 µPa2/Hz, detection probability was near one at horizontal distance zero with an effective detection radius of 17.1 km [coefficient of variation (CV) = 0.13]. Using estimates of acoustic availability and acoustically active group size from tagged and tracked fin whales, respectively, density of fin whales was estimated as 1.8 whales per 1000 km2 (CV = 0.55). A plot sampling density estimate for the same area and time, estimated from array data alone, was 1.3 whales per 1000 km2 (CV = 0.51). While the presented density estimates are from a small demonstration experiment and should be used with caution, the framework presented here advances our understanding of the potential use of gliders for cetacean density estimation.


Assuntos
Baleia Comum , Animais , Cetáceos , Probabilidade , Acústica , Aeronaves , Vocalização Animal
4.
Philos Trans R Soc Lond B Biol Sci ; 376(1836): 20210046, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34482716

RESUMO

The most flexible communication systems are those of open-ended vocal learners that can acquire new signals throughout their lifetimes. While acoustic signals carry information in general voice features that affect all of an individual's vocalizations, vocal learners can also introduce novel call types to their repertoires. Delphinids are known for using such learned call types in individual recognition, but their role in other contexts is less clear. We investigated the whistles of two closely related, sympatric common dolphin species, Delphinus delphis and Delphinus bairdii, to evaluate species differences in whistle contours. Acoustic recordings of single-species groups were obtained from the Southern California Bight. We used an unsupervised neural network to categorize whistles and compared the resulting whistle types between species. Of the whistle types recorded in more than one encounter, 169 were shared between species and 60 were species-specific (32 D. delphis types, 28 D. bairdii types). Delphinus delphis used 15 whistle types with an oscillatory frequency contour while only one such type was found in D. bairdii. Given the role of vocal learning in delphinid vocalizations, we argue that these differences in whistle production are probably culturally driven and could help facilitate species recognition between Delphinus species. This article is part of the theme issue 'Vocal learning in animals and humans'.


Assuntos
Golfinhos Comuns/fisiologia , Aprendizagem , Reconhecimento Psicológico , Vocalização Animal , Animais , California , Oceano Pacífico
5.
J Acoust Soc Am ; 149(1): 111, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33514185

RESUMO

The population density of Cuvier's beaked whales is estimated acoustically with drifting near-surface hydrophone recorders in the Catalina Basin. Three empirical approaches (trial-based, distance-sampling, and spatially explicit capture-recapture) are used to estimate the probability of detecting the echolocation pulses as a function of range. These detection functions are used with two point-transect methods (snapshot and dive-cue) to estimate density. Measurement errors result in a small range of density estimates (3.9-5.4 whales per 1000 km2). Use of multiple approaches and methods allows comparison of the required information and assumptions of each. The distance-sampling approach with snapshot-based density estimates has the most stringent assumptions but would be the easiest to implement for large scale surveys of beaked whale density. Alternative approaches to estimating detection functions help validate this approach. The dive cue method of density estimation has promise, but additional work is needed to understand the potential bias caused by animal movement during a dive. Empirical methods are a viable alternative to the theoretical acoustic modeling approaches that have been used previously to estimate beaked whale density.

6.
J Acoust Soc Am ; 147(2): 961, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32113295

RESUMO

Acoustically equipped deep-water mobile autonomous platforms can be used to survey for marine mammals over intermediate spatiotemporal scales. Direct comparisons to fixed recorders are necessary to evaluate these tools as passive acoustic monitoring platforms. One glider and two drifting deep-water floats were simultaneously deployed within a deep-water cabled hydrophone array to quantitatively assess their survey capabilities. The glider was able to follow a pre-defined track while float movement was somewhat unpredictable. Fin whale (Balaenoptera physalus) 20 Hz pulses were recorded by all hydrophones throughout the two-week deployment. Calls were identified using a template detector, which performed similarly across recorder types. The glider data contained up to 78% fewer detections per hour due to increased low-frequency flow noise present during glider descents. The glider performed comparably to the floats and fixed recorders at coarser temporal scales; hourly and daily presence of detections did not vary by recorder type. Flow noise was related to glider speed through water and dive state. Glider speeds through water of 25 cm/s or less are suggested to minimize flow noise and the importance of glider ballasting, detector characterization, and normalization by effort when interpreting glider-collected data and applying it to marine mammal density estimation are discussed.

7.
J Exp Biol ; 222(Pt 5)2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833464

RESUMO

This study measured the degree of behavioral responses in blue whales (Balaenoptera musculus) to controlled noise exposure off the southern California coast. High-resolution movement and passive acoustic data were obtained from non-invasive archival tags (n=42) whereas surface positions were obtained with visual focal follows. Controlled exposure experiments (CEEs) were used to obtain direct behavioral measurements before, during and after simulated and operational military mid-frequency active sonar (MFAS), pseudorandom noise (PRN) and controls (no noise exposure). For a subset of deep-feeding animals (n=21), active acoustic measurements of prey were obtained and used as contextual covariates in response analyses. To investigate potential behavioral changes within individuals as a function of controlled noise exposure conditions, two parallel analyses of time-series data for selected behavioral parameters (e.g. diving, horizontal movement and feeding) were conducted. This included expert scoring of responses according to a specified behavioral severity rating paradigm and quantitative change-point analyses using Mahalanobis distance statistics. Both methods identified clear changes in some conditions. More than 50% of blue whales in deep-feeding states responded during CEEs, whereas no changes in behavior were identified in shallow-feeding blue whales. Overall, responses were generally brief, of low to moderate severity, and highly dependent on exposure context such as behavioral state, source-to-whale horizontal range and prey availability. Response probability did not follow a simple exposure-response model based on received exposure level. These results, in combination with additional analytical methods to investigate different aspects of potential responses within and among individuals, provide a comprehensive evaluation of how free-ranging blue whales responded to mid-frequency military sonar.


Assuntos
Balaenoptera/fisiologia , Mergulho , Comportamento Alimentar/efeitos da radiação , Ruído/efeitos adversos , Acústica , Animais , California
8.
J Acoust Soc Am ; 140(3): EL274, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27914375

RESUMO

In fall 2014 and spring 2015, passive acoustic data were collected via autonomous gliders east of Guam in an area that included the Mariana Trench Marine National Monument. A short (2-4 s), complex sound was recorded that features a ∼38 Hz moan with both harmonics and amplitude modulation, followed by broad-frequency metallic-sounding sweeps up to 7.5 kHz. This sound was recorded regularly during both fall and spring surveys. Aurally, the sound is quite unusual and most resembles the minke whale "Star Wars" call. It is likely this sound is biological and produced by a baleen whale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...