Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 293(5): 1536-1549, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29255091

RESUMO

Crotalicidin (Ctn), a cathelicidin-related peptide from the venom of a South American rattlesnake, possesses potent antimicrobial, antitumor, and antifungal properties. Previously, we have shown that its C-terminal fragment, Ctn(15-34), retains the antimicrobial and antitumor activities but is less toxic to healthy cells and has improved serum stability. Here, we investigated the mechanisms of action of Ctn and Ctn(15-34) against Gram-negative bacteria. Both peptides were bactericidal, killing ∼90% of Escherichia coli and Pseudomonas aeruginosa cells within 90-120 and 5-30 min, respectively. Studies of ζ potential at the bacterial cell membrane suggested that both peptides accumulate at and neutralize negative charges on the bacterial surface. Flow cytometry experiments confirmed that both peptides permeabilize the bacterial cell membrane but suggested slightly different mechanisms of action. Ctn(15-34) permeabilized the membrane immediately upon addition to the cells, whereas Ctn had a lag phase before inducing membrane damage and exhibited more complex cell-killing activity, probably because of two different modes of membrane permeabilization. Using surface plasmon resonance and leakage assays with model vesicles, we confirmed that Ctn(15-34) binds to and disrupts lipid membranes and also observed that Ctn(15-34) has a preference for vesicles that mimic bacterial or tumor cell membranes. Atomic force microscopy visualized the effect of these peptides on bacterial cells, and confocal microscopy confirmed their localization on the bacterial surface. Our studies shed light onto the antimicrobial mechanisms of Ctn and Ctn(15-34), suggesting Ctn(15-34) as a promising lead for development as an antibacterial/antitumor agent.


Assuntos
Antibacterianos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Membrana Celular , Venenos de Crotalídeos , Crotalus , Escherichia coli , Fragmentos de Peptídeos , Pseudomonas aeruginosa , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Membrana Celular/química , Membrana Celular/metabolismo , Venenos de Crotalídeos/química , Venenos de Crotalídeos/farmacologia , Escherichia coli/química , Escherichia coli/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/metabolismo , Ressonância de Plasmônio de Superfície
2.
J Control Release ; 245: 127-136, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-27890856

RESUMO

Chronic myeloid leukemia (CML) is a myeloproliferative disorder caused by a single gene mutation, a reciprocal translocation that originates the Bcr-Abl gene with constitutive tyrosine kinase activity. As a monogenic disease, it is an optimum target for RNA silencing therapy. We developed a siRNA-based therapeutic approach in which the siRNA is delivered by pepM or pepR, two cell-penetrating peptides (CPPs) derived from the dengue virus capsid protein. These peptides have a dual role: siRNA delivery into cells and direct action as bioportides, i.e. intracellularly bioactive CPPs, targetting cancer-related signaling processes. Both pepM and pepR penetrate the positive Bcr-Abl+ Cell Line (BV173). Five in silico designed anti-Bcr-Abl siRNA were selected for in vitro analysis after thorough screening. The Bcr-Abl downregulation kinetics (48h to 168h) was followed by quantitative PCR. The bioportide action of the peptide vectors was evaluated by genome-wide microarray analysis and further validated by testing BV173 cell cycle and cell proliferation monitoring different genes involved in housekeeping/cell stress (RPL13A, HPRT1), cell proliferation (ki67), cell apoptosis (Caspase 3 and Caspase 9) and cell cycle steps (CDK2, CCDN2, CDKN1A). Assays with a commercial transfection agent were carried out for comparison purposes. Maximal Bcr-Abl gene knockdown was observed for one of the siRNA when delivered by pepM at 120h. Both pepM and pepR showed downregulation effects on proliferative CML-related signaling pathways having direct impact on BV173 cell cycle and proliferation, thus reinforcing the siRNA effect by acting as anticancer molecules. With this work we show the therapeutic potential of a CPP shuttle that combines intrinsic anticancer properties with the ability to deliver functional siRNA into CML cell models. By such combination, the pepM-siRNA conjugates lowered Bcr-Abl gene expression levels more extensively than conventional siRNA delivery technologies and perturbed leukemogenic cell homeostasis, hence revealing their potential as novel alternative scaffolds for CML therapy.


Assuntos
Peptídeos Penetradores de Células/administração & dosagem , Proteínas de Fusão bcr-abl/genética , Técnicas de Transferência de Genes , Leucemia Mielogênica Crônica BCR-ABL Positiva/terapia , RNA Interferente Pequeno/administração & dosagem , Linhagem Celular Tumoral , Terapia Combinada , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/genética , Humanos , RNA Mensageiro/metabolismo
3.
FEMS Microbiol Rev ; 39(2): 155-70, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25725010

RESUMO

Dengue is the most prevalent arthropod-borne viral disease, caused by dengue virus, a member of the Flaviviridae family. Its worldwide incidence is now a major health problem, with 2.5 billion people living in risk areas. In this review, we integrate the structural rearrangements of each viral protein and their functions in all the steps of virus entry into the host cells. We describe in detail the putative receptors and attachment factors in mammalian and mosquito cells, and the recognition of viral immunocomplexes via Fcγ receptor in immune cells. We also discuss that virus internalization might occur through distinct entry pathways, including clathrin-mediated or non-classical clathrin-independent endocytosis, depending on the host cell and virus serotype or strain. The implications of viral maturation in virus entry are also explored. Finally, we discuss the mechanisms of viral genome access to the cytoplasm. This includes the role of low pH-induced conformational changes in the envelope protein that mediate membrane fusion, and original insights raised by our recent work that supports the hypothesis that capsid protein would also be an active player in this process, acting on viral genome translocation into the cytoplasm.


Assuntos
Vírus da Dengue/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Internalização do Vírus , Animais , Dengue/patologia , Humanos , Ligação Proteica , Receptores Virais/metabolismo
4.
Bioinformatics ; 31(14): 2252-6, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25725499

RESUMO

MOTIVATION: The need for more effective and safer pharmaceuticals is a persistent quest. Microbial adaptations create the need to permanently develop new antimicrobials (AMPs), for instance. Similarly, intracellular delivery of drugs is still a challenge and translocation of membranes for drug delivery is an area of intense research. Peptides can be used both as AMP drug leads and drug carrier systems for intracellular delivery. Multifunctional proteins are abundant in viruses but, surprisingly, have never been thoroughly screened for bioactive peptide sequences. RESULTS: Using the AMPA and CellPPD online tools, we have evaluated the propensity of viral proteins to comprise AMP or cell-penetrating peptides (CPPs). Capsid proteins from both enveloped and non-enveloped viruses, and membrane and envelope proteins from enveloped viruses, in a total of 272 proteins from 133 viruses, were screened to detect the presence of potential AMP and CPP sequences. A pool of 2444 and 426 CPP and AMP sequences, respectively, were discovered. The capsids of flaviviruses are the best sources of these peptides reaching more than 80% of CPP sequence coverage per protein. Selected sequences were tested experimentally and validated the results. Overall, this study reveals that viruses form a natural multivalent biotechnological platform still underexplored in drug discovery and the heterogeneous abundance of CPP/AMP sequences among viral families opens new avenues in viral biology research.


Assuntos
Anti-Infecciosos/química , Peptídeos Penetradores de Células/química , Proteínas Virais/química , Proteínas do Capsídeo/química , Proteínas de Membrana/química , Análise de Sequência de Proteína
5.
Biochim Biophys Acta ; 1848(2): 554-60, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25445678

RESUMO

Despite the intensive study of antibiotic-induced bacterial permeabilization, its kinetics and molecular mechanism remain largely elusive. A new methodology that extends the concept of the live-dead assay in flow cytometry to real time-resolved detection was used to overcome these limitations. The antimicrobial activity of pepR was monitored in time-resolved flow cytometry for three bacterial strains: Escherichia coli (ATCC 25922), E. coli K-12 (CGSC Strain 4401) and E. coli JW3596-1 (CGSC Strain 11805). The latter strain has truncated lipopolysaccharides (LPS) in the outer membrane. This new methodology provided information on the efficacy of the antibiotics and sheds light on their mode of action at membrane-level. Kinetic data regarding antibiotic binding and lytic action were retrieved. Membrane interaction and permeabilization events differ significantly among strains. The truncation of LPS moieties does not hamper AMP binding but compromises membrane disruption and bacterial killing. We demonstrated the usefulness of time-resolved flow cytometry to study antimicrobial-induced permeabilization by collecting kinetic data that contribute to characterize the action of antibiotics directly on bacteria.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Lipopolissacarídeos/química , Bioensaio , Membrana Celular/química , Escherichia coli/química , Citometria de Fluxo/métodos , Corantes Fluorescentes , Cinética , Viabilidade Microbiana/efeitos dos fármacos , Compostos Orgânicos , Propídio , Especificidade da Espécie , Espectrometria de Fluorescência , Fatores de Tempo
6.
IUBMB Life ; 66(3): 182-194, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24659560

RESUMO

The current landscapes of novel therapeutic approaches rely mostly on gene-targeted technologies, enabling to fight rare genomic diseases, from infections to cancer and hereditary diseases. Although, reaching the action-site for this novel treatments requires to deliver nucleic acids, or other macromolecules into cells, which may pose difficult tasks to pharmaceutical companies. To overcome this technological limitation, a wide variety of vectors have been developed in the past decades and have proven to be successful in delivering various therapeutics. Cell-penetrating peptides (CPP) have been one of the technologies widely studied and have been increasingly used to transport small RNA/DNA, plasmids, antibodies, and nanoparticles into cells. Despite the already proved huge potential that these peptide-based approaches may suggest, few advances have been put to pharmacological or clinical use. This review will describe the origin, development, and usage of CPP to deliver therapeutic agents into cells, with special emphasis on their current application to gene-therapies. Specifically, we will describe the current trials being conducted to treat cancer, gene disorders, and autoimmune diseases using CPP-based therapies. © 2014 IUBMB Life, 66(3):182-194, 2014.

7.
PLoS One ; 8(12): e81450, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24339931

RESUMO

Supercharged proteins are a recently identified class of proteins that have the ability to efficiently deliver functional macromolecules into mammalian cells. They were first developed as bioengineering products, but were later found in the human proteome. In this work, we show that this class of proteins with unusually high net positive charge is frequently found among viral structural proteins, more specifically among capsid proteins. In particular, the capsid proteins of viruses from the Flaviviridae family have all a very high net charge to molecular weight ratio (> +1.07/kDa), thus qualifying as supercharged proteins. This ubiquity raises the hypothesis that supercharged viral capsid proteins may have biological roles that arise from an intrinsic ability to penetrate cells. Dengue virus capsid protein was selected for a detailed experimental analysis. We showed that this protein is able to deliver functional nucleic acids into mammalian cells. The same result was obtained with two isolated domains of this protein, one of them being able to translocate lipid bilayers independently of endocytic routes. Nucleic acids such as siRNA and plasmids were delivered fully functional into cells. The results raise the possibility that the ability to penetrate cells is part of the native biological functions of some viral capsid proteins.


Assuntos
Proteínas do Capsídeo/metabolismo , Vírus da Dengue/metabolismo , Espaço Intracelular/metabolismo , RNA Viral/metabolismo , Sequência de Aminoácidos , Animais , Proteínas do Capsídeo/química , Linhagem Celular , Vírus da Dengue/fisiologia , Humanos , Espaço Intracelular/virologia , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Conformação Proteica , RNA Viral/química , Internalização do Vírus
8.
Biopolymers ; 100(4): 325-36, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23868207

RESUMO

The structural organization of viral particles is among the most astonishing examples of molecular self-assembly in nature, involving proteins, nucleic acids, and, sometimes, lipids. Proper assembly is essential to produce well structured infectious virions. A great variety of structural arrangements can be found in viral particles. Nucleocapsids, for instance, may display highly ordered geometric shapes or consist in macroscopically amorphous packs of the viral genome. Alphavirus and flavivirus are viral genera that exemplify these extreme cases, the former comprising viral particles structured with a T = 4 icosahedral symmetry, whereas flavivirus capsids have no regular geometry. Dengue virus is a member of flavivirus genus and is used in this article to illustrate how viral protein-derived peptides can be used advantageously over full-length proteins to unravel the foundations of viral supramolecular assemblies. Membrane- and viral RNA-binding data of capsid protein-derived dengue virus peptides are used to explain the amorphous organization of the viral capsid. Our results combine bioinformatic and spectroscopic approaches using two- or three-component peptide and/or nucleic acid and/or lipid systems.


Assuntos
Proteínas do Capsídeo , Capsídeo , Proteínas do Capsídeo/química , Vírus da Dengue , Dados de Sequência Molecular , Peptídeos/metabolismo , Vírion
9.
J Pept Sci ; 19(4): 182-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23322613

RESUMO

One of the major challenges in the drug development process is biodistribution across epithelia and intracellular drug targeting. Cellular membrane heterogeneity is one of the major drawbacks in developing efficient and sustainable drug delivery systems, which brings the need to study their interaction with lipids in order to unravel their mechanisms of action and improve their delivery capacities. Cell penetrating peptides (CPPs) are able to translocate almost any cell membrane carrying cargo molecules. However, different CPP use different entry mechanisms, which are often concentration-dependent and cargo-dependent. Being able to quantify the lipid affinity of CPP is of obvious importance and can be achieved by studying the partition extent of CPP into lipid bilayers. The partition constant (Kp) reflects the lipid-water partition extent. However, all currently available methodologies are only suitable to determine the partition of single molecules into lipid membranes or entities, being unsuitable to determine the partition of bimolecular or higher order supramolecular complexes. We derived and tested a mathematical model to determine the Kp of supramolecular CPP-cargo complexes from fluorescence spectroscopy data, using DNA oligomers as a model cargo. As a proof-of-concept example, the partition extent of two new membrane active peptides derived from dengue virus capsid protein (DENV C protein) with potential CPP properties, in both scenarios (free peptide and complexed with a molecular cargo), were tested. We were able to identify the lipid affinity of these CPP:DNA complexes, thus gaining valuable insights into better CPP formulations.


Assuntos
Peptídeos Penetradores de Células/química , Vírus da Dengue/química , Sistemas de Liberação de Medicamentos , Bicamadas Lipídicas/química , Modelos Químicos , Proteínas Virais/química , Animais , Transporte Biológico Ativo , Humanos , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA