Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 140: 68-77, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31085448

RESUMO

Mo-CBP3 is a chitin-binding 2S albumin from Moringa oleifera. This seed storage protein is resistant to thermal denaturation and shows biological activities that might be of practical use, such as antifungal properties against Candida sp., a pathogen that causes candidiasis, and against Fusarium solani, a soil fungus that can cause diseases in plants and humans. Previous work has demonstrated that Mo-CBP3 is a mixture of isoforms encoded by members of a small multigene family. Mature Mo-CBP3 is a small protein (∼14 kDa), constituted by a small chain of approximately 4 kDa and a large chain of 8 kDa, which are held together by disulfide bridges. However, a more comprehensive picture on the spectrum of Mo-CBP3 isoforms which are found in mature seeds, is still lacking. In this work, genomic DNA fragments were obtained from M. oleifera leaves, cloned and completely sequenced, thus revealing new genes encoding Mo-CBP3. Moreover, mass spectrometry analysis showed that the mature protein is a complex mixture of isoforms with a remarkable number of molecular mass variants. Using computational predictions and calculations, most (∼86%) of the experimentally determined masses were assigned to amino acid sequences deduced from DNA fragments. The results suggested that the complex mixture of Mo-CBP3 isoforms originates from proteins encoded by closely related genes, whose products undergo different combinations of distinct post-translational modifications, including cleavage at the N- and C-terminal ends of both subunits, cyclization of N-terminal Gln, as well as Pro hydroxylation, Ser/Thr phosphorylation, and Met oxidation.


Assuntos
Moringa oleifera/química , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/metabolismo , Humanos , Proteínas de Plantas/química , Isoformas de Proteínas/química , Processamento de Proteína Pós-Traducional
2.
Enzyme Microb Technol ; 126: 50-61, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31000164

RESUMO

The biocontrol activity of some soil strains of Chromobacterium sp. against pathogenic fungi has been attributed to secreted chitinases. The aim of this work was to characterize biochemically a recombinant chitinase (CvChi47) from C. violaceum ATCC 12472 and to investigate its effects on phytopathogenic fungi. CvChi47 is a modular enzyme with 450 amino acid residues, containing a type I signal peptide at the N-terminal region, followed by one catalytic domain belonging to family 18 of the glycoside hydrolases, and two type-3 chitin-binding domains at the C-terminal end. The recombinant enzyme was expressed in Escherichia coli as a His-tagged protein and purified to homogeneity. The native signal peptide of CvChi47 was used to direct its secretion into the culture medium, from where the recombinant product was purified by affinity chromatography on chitin and immobilized metal. The purified protein showed an apparent molecular mass of 46 kDa, as estimated by denaturing polyacrylamide gel electrophoresis, indicating the removal of the signal peptide. CvChi47 was a thermostable protein, retaining approximately 53.7% of its activity when heated at 100 °C for 1 h. The optimum hydrolytic activity was observed at 60 °C and pH 5. The recombinant chitinase inhibited the conidia germination of the phytopathogenic fungi Fusarium oxysporum and F. guttiforme, hence preventing mycelial growth. Furthermore, atomic force microscopy experiments revealed a pronounced morphological alteration of the cell surface of conidia incubated with CvChi47 in comparison to untreated cells. Taken together, these results show the potential of CvChi47 as a molecular tool to control plant diseases caused by these Fusarium species.


Assuntos
Antifúngicos/farmacologia , Quitinases/metabolismo , Chromobacterium/enzimologia , Fusarium/crescimento & desenvolvimento , Doenças das Plantas/prevenção & controle , Proteínas Recombinantes/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Quitinases/química , Quitinases/genética , Clonagem Molecular , Estabilidade Enzimática , Fusarium/efeitos dos fármacos , Doenças das Plantas/microbiologia , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homologia de Sequência , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento , Temperatura
3.
Phytochemistry ; 159: 46-55, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30577001

RESUMO

Osmotin- and thaumatin-like proteins (OLPs and TLPs) have been associated with plant defense responses to different biotic stresses. In the present work, several in silico sequences from OLPs and TLPs were investigated by means of bioinformatics tools aiming to prospect for antimicrobial peptides. The peptide sequences chosen were further synthesized and characterized, and their activities and action mechanisms were assayed against some phytopathogenic fungi, bacteria and yeasts of clinical importance. From this survey approach, four peptide sequences (GDCKATSC, CPRALKVPGGCN, IVGQCPAKLKA, and CAADIVGQCPAKLK) were selected considering some chemical parameters commonly attributed to antimicrobial peptides. Antimicrobial assays showed that these peptides were unable to inhibit mycelial growth of phytopathogenic fungi and they did not affect bacterial cell growth. Nevertheless, significant inhibitory activity was found for CPRALKVPGGCN and CAADIVGQCPAKLK against Candida albicans and Saccharomyces cerevisiae. Fluorescence and scanning electron microscopy assays suggested that CAADIVGQCPAKLK did not damage the overall cell structure, or its activity was negligible on yeast membrane and cell wall integrity. However, it induced the production of reactive oxygen species (ROS) and apoptosis. Molecular docking analysis showed that CAADIVGQCPAKLK had strong affinity to interact with specific plasma membrane receptors of C. albicans and S. cerevisiae, which have been described as promoting the induction of apoptosis. The results indicate that CAADIVGQCPAKLK can be a valuable target for the development of a desired antimicrobial agent against the pathogen C. albicans.


Assuntos
Antifúngicos/farmacologia , Apoptose/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Peptídeos/farmacologia , Proteínas de Plantas/química , Plantas/química , Receptores de Superfície Celular/efeitos dos fármacos , Sequência de Aminoácidos , Antifúngicos/química , Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Membrana Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Bases de Dados de Proteínas , Descoberta de Drogas , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Peptídeos/química , Peptídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo
4.
Front Microbiol ; 8: 980, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28634471

RESUMO

Candida species are opportunistic pathogens that infect immunocompromised and/or immunosuppressed patients, particularly in hospital facilities, that besides representing a significant threat to health increase the risk of mortality. Apart from echinocandins and triazoles, which are well tolerated, most of the antifungal drugs used for candidiasis treatment can cause side effects and lead to the development of resistant strains. A promising alternative to the conventional treatments is the use of plant proteins. M. oleifera Lam. is a plant with valuable medicinal properties, including antimicrobial activity. This work aimed to purify a chitin-binding protein from M. oleifera seeds and to evaluate its antifungal properties against Candida species. The purified protein, named Mo-CBP2, represented about 0.2% of the total seed protein and appeared as a single band on native PAGE. By mass spectrometry, Mo-CBP2 presented 13,309 Da. However, by SDS-PAGE, Mo-CBP2 migrated as a single band with an apparent molecular mass of 23,400 Da. Tricine-SDS-PAGE of Mo-CBP2 under reduced conditions revealed two protein bands with apparent molecular masses of 7,900 and 4,600 Da. Altogether, these results suggest that Mo-CBP2 exists in different oligomeric forms. Moreover, Mo-CBP2 is a basic glycoprotein (pI 10.9) with 4.1% (m/m) sugar and it did not display hemagglutinating and hemolytic activities upon rabbit and human erythrocytes. A comparative analysis of the sequence of triptic peptides from Mo-CBP2 in solution, after LC-ESI-MS/MS, revealed similarity with other M. oleifera proteins, as the 2S albumin Mo-CBP3 and flocculating proteins, and 2S albumins from different species. Mo-CBP2 possesses in vitro antifungal activity against Candida albicans, C. parapsilosis, C. krusei, and C. tropicalis, with MIC50 and MIC90 values ranging between 9.45-37.90 and 155.84-260.29 µM, respectively. In addition, Mo-CBP2 (18.90 µM) increased the cell membrane permeabilization and reactive oxygen species production in C. albicans and promoted degradation of circular plasmid DNA (pUC18) from Escherichia coli. The data presented in this study highlight the potential use of Mo-CBP2 as an anticandidal agent, based on its ability to inhibit Candida spp. growth with apparently low toxicity on mammalian cells.

5.
Food Chem Toxicol ; 83: 1-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26032632

RESUMO

Mo-CBP3 is an antifungal protein produced by Moringa oleifera which has been investigated as potential candidate for developing transgenic crops. Before the use of novel proteins, food safety tests must be conducted. This work represents an early food safety assessment of Mo-CBP3, using the two-tiered approach proposed by ILSI. The history of safe use, mode of action and results for amino acid sequence homology using the full-length and short contiguous amino acids sequences indicate low risk associated to this protein. Mo-CBP3 isoforms presented a reasonable number of alignments (>35% identity) with allergens in a window of 80 amino acids. This protein was resistant to pepsin degradation up to 2 h, but it was susceptible to digestion using pancreatin. Many positive attributes were presented for Mo-CBP3. However, this protein showed high sequence homology with allergens and resistance to pepsin digestion that indicates that further hypothesis-based testing on its potential allergenicity must be done. Additionally, animal toxicity evaluations (e.g. acute and repeated dose oral exposure assays) must be performed to meet the mandatory requirements of several regulatory agencies. Finally, the approach adopted here exemplified the importance of performing an early risk assessment of candidate proteins for use in plant transformation programs.


Assuntos
Antígenos de Plantas/efeitos adversos , Proteínas Alimentares/efeitos adversos , Alimentos Geneticamente Modificados/efeitos adversos , Modelos Moleculares , Moringa oleifera/metabolismo , Proteínas de Plantas/efeitos adversos , Sementes/metabolismo , Alérgenos/efeitos adversos , Alérgenos/química , Alérgenos/genética , Alérgenos/metabolismo , Ração Animal/efeitos adversos , Ração Animal/microbiologia , Animais , Antígenos de Plantas/química , Antígenos de Plantas/genética , Antígenos de Plantas/metabolismo , Brasil , Quitina/metabolismo , Proteínas Alimentares/química , Proteínas Alimentares/metabolismo , Digestão , Hipersensibilidade Alimentar/etiologia , Hipersensibilidade Alimentar/prevenção & controle , Alimentos Geneticamente Modificados/microbiologia , Humanos , Ligantes , Fungos Mitospóricos/crescimento & desenvolvimento , Moringa oleifera/genética , Controle Biológico de Vetores/métodos , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/efeitos adversos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Isoformas de Proteínas/efeitos adversos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Medição de Risco , Sementes/genética , Homologia de Sequência de Aminoácidos
6.
PLoS One ; 10(3): e0119871, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25789746

RESUMO

Mo-CBP3 is a chitin-binding protein from M. oleifera seeds that inhibits the germination and mycelial growth of phytopathogenic fungi. This protein is highly thermostable and resistant to pH changes, and therefore may be useful in the development of new antifungal drugs. However, the relationship of MoCBP3 with the known families of carbohydrate-binding domains has not been established. In the present study, full-length cDNAs encoding 4 isoforms of Mo-CBP3 (Mo-CBP3-1, Mo-CBP3-2, Mo-CBP3-3 and Mo-CBP3-4) were cloned from developing seeds. The polypeptides encoded by the Mo-CBP3 cDNAs were predicted to contain 160 (Mo-CBP3-3) and 163 amino acid residues (Mo-CBP3-1, Mo-CBP3-2 and Mo-CBP3-4) with a signal peptide of 20-residues at the N-terminal region. A comparative analysis of the deduced amino acid sequences revealed that Mo-CBP3 is a typical member of the 2S albumin family, as shown by the presence of an eight-cysteine motif, which is a characteristic feature of the prolamin superfamily. Furthermore, mass spectrometry analysis demonstrated that Mo-CBP3 is a mixture of isoforms that correspond to different mRNA products. The identification of Mo-CBP3 as a genuine member of the 2S albumin family reinforces the hypothesis that these seed storage proteins are involved in plant defense. Moreover, the chitin-binding ability of Mo-CBP3 reveals a novel functionality for a typical 2S albumin.


Assuntos
Albuminas 2S de Plantas/genética , Proteínas de Transporte/genética , Quitinases/genética , Moringa oleifera/genética , Proteínas de Plantas/genética , Albuminas 2S de Plantas/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/metabolismo , Quitina/genética , Quitina/metabolismo , Quitinases/classificação , Sementes/química , Sementes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...