Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Green Chem ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39144448

RESUMO

We propose an innovative approach to address the pressing need for efficient and transparent evaluation techniques to assess extraction processes' sustainability. In response to society's growing demand for natural products and the consequent surge in biomass exploration, a critical imperative arises to ensure that these processes are genuinely environmentally friendly. Extracting natural compounds has traditionally been regarded as a benign activity rooted in ancient practices. However, contemporary extraction methods can also significantly harm the environment if not carefully managed. Recognizing this, we developed a novel metric, Path2Green, tailored specifically and rooted in 12 new principles of a green extraction process. Path2Green seeks to provide a comprehensive framework beyond conventional metrics, offering a nuanced understanding of the environmental impact of extraction activities from biomass collection/production until the end of the process. By integrating factors such as resource depletion, energy consumption, waste generation, and biodiversity preservation, Path2Green aims to offer a holistic assessment of sustainability of an extraction approach. The significance of Path2Green lies in its ability to distill complex environmental data into a simple, accessible metric. This facilitates informed decision-making for stakeholders across industries, enabling them to prioritize greener extraction practices. Moreover, by setting clear benchmarks and standards, Path2Green incentivizes innovation and drives continuous improvement in sustainability efforts, being a new user-friendly methodology.

2.
ACS Nano ; 18(24): 15815-15830, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38833572

RESUMO

Amyloid-like fibrils are garnering keen interest in biotechnology as supramolecular nanofunctional units to be used as biomimetic platforms to control cell behavior. Recent insights into fibril functionality have highlighted their importance in tissue structure, mechanical properties, and improved cell adhesion, emphasizing the need for scalable and high-kinetics fibril synthesis. In this study, we present the instantaneous and bulk formation of amyloid-like nanofibrils from human platelet lysate (PL) using the ionic liquid cholinium tosylate as a fibrillating agent. The instant fibrillation of PL proteins upon supramolecular protein-ionic liquid interactions was confirmed from the protein conformational transition toward cross-ß-sheet-rich structures. These nanofibrils were utilized as building blocks for the formation of thin and flexible free-standing membranes via solvent casting to support cell self-aggregation. These PL-derived fibril membranes reveal a nanotopographically rough surface and high stability over 14 days under cell culture conditions. The culture of mesenchymal stem cells or tumor cells on the top of the membrane demonstrated that cells are able to adhere and self-organize in a three-dimensional (3D) spheroid-like microtissue while tightly folding the fibril membrane. Results suggest that nanofibril membrane incorporation in cell aggregates can improve cell viability and metabolic activity, recreating native tissues' organization. Altogether, these PL-derived nanofibril membranes are suitable bioactive platforms to generate 3D cell-guided microtissues, which can be explored as bottom-up strategies to faithfully emulate native tissues in a fully human microenvironment.


Assuntos
Plaquetas , Nanofibras , Humanos , Plaquetas/metabolismo , Plaquetas/química , Nanofibras/química , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Agregação Celular/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Amiloide/química , Amiloide/metabolismo , Membranas Artificiais
3.
Carbohydr Polym ; 337: 122112, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710545

RESUMO

The growing concerns on environmental pollution and sustainability have raised the interest on the development of functional biobased materials for different applications, including food packaging, as an alternative to the fossil resources-based counterparts, currently available in the market. In this work, functional wood inspired biopolymeric nanocomposite films were prepared by solvent casting of suspensions containing commercial beechwood xylans, cellulose nanofibers (CNF) and lignosulfonates (magnesium or sodium), in a proportion of 2:5:3 wt%, respectively. All films presented good homogeneity, translucency, and thermal stability up to 153 °C. The incorporation of CNF into the xylan/lignosulfonates matrix provided good mechanical properties to the films (Young's modulus between 1.08 and 3.79 GPa and tensile strength between 12.75 and 14.02 MPa). The presence of lignosulfonates imparted the films with antioxidant capacity (DPPH radical scavenging activity from 71.6 to 82.4 %) and UV barrier properties (transmittance ≤19.1 % (200-400 nm)). Moreover, the films obtained are able to successfully delay the browning of packaged fruit stored over 7 days at 4 °C. Overall, the obtained results show the potential of using low-cost and eco-friendly resources for the development of sustainable active food packaging materials.


Assuntos
Celulose , Embalagem de Alimentos , Lignina , Lignina/análogos & derivados , Nanocompostos , Nanofibras , Resistência à Tração , Madeira , Xilanos , Embalagem de Alimentos/métodos , Lignina/química , Nanocompostos/química , Celulose/química , Celulose/análogos & derivados , Madeira/química , Nanofibras/química , Xilanos/química , Antioxidantes/química , Frutas/química
4.
Chem Bio Eng ; 1(1): 44-52, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38434799

RESUMO

Artemisinin, a drug used to treat malaria, can be chemically synthesized or extracted from Artemisia annua L. However, the extraction method for artemisinin from biomass needs to be more sustainable while maintaining or enhancing its bioactivity. This work investigates the use of aqueous solutions of salts and ionic liquids with hydrotropic properties as alternative solvents for artemisinin extraction from Artemisia annua L. Among the investigated solvents, aqueous solutions of cholinium salicylate and sodium salicylate were found to be the most promising. To optimize the extraction process, a response surface method was further applied, in which the extraction time, hydrotrope concentration, and temperature were optimized. The optimized conditions resulted in extraction yields of up to 6.50 and 6.44 mg·g-1, obtained with aqueous solutions of sodium salicylate and cholinium salicylate, respectively. The extracts obtained were tested for their antimalarial activity, showing a higher efficacy against the Plasmodium falciparum strain compared with pure (synthetic) artemisinin or extracts obtained with conventional organic solvents. Characterization of the extracts revealed the presence of artemisinin together with other compounds, such as artemitin, chrysosplenol D, arteannuin B, and arteannuin J. These compounds act synergistically with artemisinin and enhance the antimalarial activity of the obtained extracts. Given the growing concern about artemisinin resistance, the results here obtained pave the way for the development of sustainable and biobased antimalarial drugs.

5.
Chem Rev ; 124(6): 3037-3084, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38437627

RESUMO

Proteins are highly labile molecules, thus requiring the presence of appropriate solvents and excipients in their liquid milieu to keep their stability and biological activity. In this field, ionic liquids (ILs) have gained momentum in the past years, with a relevant number of works reporting their successful use to dissolve, stabilize, extract, and purify proteins. Different approaches in protein-IL systems have been reported, namely, proteins dissolved in (i) neat ILs, (ii) ILs as co-solvents, (iii) ILs as adjuvants, (iv) ILs as surfactants, (v) ILs as phase-forming components of aqueous biphasic systems, and (vi) IL-polymer-protein/peptide conjugates. Herein, we critically analyze the works published to date and provide a comprehensive understanding of the IL-protein interactions affecting the stability, conformational alteration, unfolding, misfolding, and refolding of proteins while providing directions for future studies in view of imminent applications. Overall, it has been found that the stability or purification of proteins by ILs is bispecific and depends on the structure of both the IL and the protein. The most promising IL-protein systems are identified, which is valuable when foreseeing market applications of ILs, e.g., in "protein packaging" and "detergent applications". Future directions and other possibilities of IL-protein systems in light-harvesting and biotechnology/biomedical applications are discussed.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Proteínas/química , Solventes/química , Água/química , Polímeros
6.
Chempluschem ; : e202400025, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436967

RESUMO

Enzyme immobilization can offer a range of significant advantages, including reusability, and increased selectivity, stability, and activity. In this work, a central composite design (CCD) of experiments and response surface methodology (RSM) were used to study, for the first time, the L-asparaginase (ASNase) immobilization onto functionalized carbon xerogels (CXs). The best results were achieved using CXs obtained by hydrothermal oxidation with nitric acid and subsequent heat treatment in a nitrogen flow at 600 °C (CX-OX-600). Under the optimal conditions (81 min of contact time, pH 6.2 and 0.36 g/L of ASNase), an immobilization yield (IY) of 100 % and relative recovered activity (RRA) of 103 % were achieved. The kinetic parameters obtained also indicate a 1.25-fold increase in the affinity of ASNase towards the substrate after immobilization. Moreover, the immobilized enzyme retained 97 % of its initial activity after 6 consecutive reaction cycles. All these outcomes confirm the promising properties of functionalized CXs as support for ASNase, bringing new insights into the development of an efficient and stable immobilization platform for use in the pharmaceutical industry, food industry, and biosensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA