Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Phytoremediation ; 24(5): 447-455, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34348547

RESUMO

Soil salinity is considered one of the main types of soil degradation in semiarid environments around the globe. This work aims to evaluate the effectiveness of soil conditioners to enhance the growth and salt extraction ability of Salicornia ramosíssima for different soil moisture contents. Salicornia plants were cultivated in pots in which the soils were treated with the following conditioners: control; gypsum + organic matter; elemental sulfur + organic matter; and gypsum + elemental sulfur + organic matter. Salicornia plants were subjected to two soil moisture rates - at 35 and 85% field capacity. Soil conditioners associated with higher contents of soil moisture promoted significant increases, compared to control, in fresh (6.20 - 11.13 g) and dry matter (1.20 - 2.07 g), relative biomass (100 - 179%) as well as significantly increased the concentrations of Na+ (56.09 - 65.64 mg kg-1) and Cl- (110.83 - 150.0 mg kg-1) in plant tissues. Soil conditioners significantly increased salt extraction ability under the two moisture levels, mainly by promoting higher values for both transfer factor and phytoremediation potential. The best performance of Salicornia in terms of plant yield and salt extraction, regardless of the moisture level, was the gypsum + organic matter.Novelty statementThere are no studies in the literature relating the use of conditioners as a strategy to enhance Salicornia's ability to extract salts.This work contributes to the management of salinized areas around the globe in two main aspects. The first is that many of these salt-degraded areas are desertified and through this study, it is possible to revegetate and recover them. The second one is that, since Salicornia is a plant with economic value, this can serve as an incentive for farmers to grow Salicornia in saline areas.


Assuntos
Chenopodiaceae , Solo , Biodegradação Ambiental , Chenopodiaceae/metabolismo , Salinidade , Cloreto de Sódio/metabolismo
2.
Int J Phytoremediation ; 22(5): 482-489, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31621372

RESUMO

The reclamation of salt-affected soils is considered a slow process that urges the development of faster recovery strategies as a priority. The present article aimed at investigating the effect of mixing different chemical and organic conditioners on the growth of Atriplex and its salt extraction efficiency during its early growth stage. A pot experiment was conducted on saline-sodic Cambisol cultivated with Atriplex for 60 days and subjected to the following conditioner mixtures: Atriplex; Atriplex + gypsum + organic matter; Atriplex + elemental sulfur + organic matter; and Atriplex + gypsum + elemental sulfur + organic matter. The mixtures of conditioners did not affect the Atriplex growth, but caused significant increase in Na+ and Cl- contents in the dry matter of Atriplex plants. Additionally, there was an increase in the Atriplex's ability of extracting salt due to the application of the mixtures. Results suggest that the "gypsum + organic matter" mixture is preferable for a faster recovery of salts/sodium affected soils through phytoremediation by Atriplex plants, mainly due to a more significant increase in the efficiency of salt absorption.


Assuntos
Atriplex , Biodegradação Ambiental , Sódio , Cloreto de Sódio , Solo
3.
Environ Monit Assess ; 188(11): 616, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27738894

RESUMO

In northeastern Brazil, large swaths of once-productive soils have been severely degraded by soil salinization, but the true extent of the damage has not been assessed. Emerging remote sensing technology based on hyperspectral analysis offers one possibility for large-scale assessment, but it has been unclear to what extent the spectral properties of soils are related to salinity characteristics. The purpose of this study was to characterize the spectral properties of degraded (saline) and non-degraded agricultural soils in northeastern Brazil and determine the extent to which these properties correspond to soil salinity. We took soil samples from 78 locations within a 45,000-km2 site in Pernambuco State. We used cluster analysis to group the soil samples on the basis of similarities in salinity and sodicity levels, and then obtained spectral data for each group. The physical properties analysis indicated a predominance of the coarse sand fraction in almost all the soil groups, and total porosity was similar for all the groups. The chemical analysis revealed different levels of degradation among the groups, ranging from non-degraded to strongly degraded conditions, as defined by the degree of salinity and sodicity. The soil properties showing the highest correlation with spectral reflectance were the exchangeable sodium percentage followed by fine sand. Differences in the reflectance curves for the various soil groups were relatively small and were not significant. These results suggest that, where soil crusts are not present, significant challenges remain for using hyperspectral remote sensing to assess soil salinity in northeastern Brazil.


Assuntos
Salinidade , Solo/química , Brasil , Monitoramento Ambiental , Cloreto de Sódio/análise , Análise Espectral
4.
Int J Phytoremediation ; 16(1): 73-85, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24912216

RESUMO

This study aims to investigate the behavior of Atriplex nummularia under field conditions, including its growth, periodic cuttings, salt extraction, and soil chemical properties monitored for 16 months. Three treatments were evaluated: soil cultivated with Atriplex pruned at 6 and 12 months after transplanting (MAT); soil cultivated with plants that were harvested only at the end of the experiment (16 MAT); and a control (uncultivated soil) with four replications. Soil samplings were taken at 0, 6, 12, and 16 MAT. The samples were taken at depths of 0-20, 20-40, 40-60, and 60-80 cm. Biometric variables for growth were monitored monthly. The shoot was divided into leaves, thin stems (< or = 3 mm diameter), and thick stems (> 3 mm diameter) to determine its content of Ca, Mg, Na, K, and Cl. We concluded that pruning regime for Atriplex was efficient mainly because it stimulated regrowth of less lignified material (leaves and stems < or = 3 mm). We found that elements extracted by plant tissue can be quantified accurately, making them valuable indicators of the efficiency of the recovery process. The use of the Atriplex is recommended because the the possibility of revegetating areas inhospitable to most species used in conventional farming.


Assuntos
Atriplex/crescimento & desenvolvimento , Solo/química , Atriplex/metabolismo , Biodegradação Ambiental , Biomassa , Brasil , Produtos Agrícolas , Condutividade Elétrica , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Sais
5.
Ciênc. agrotec., (Impr.) ; 35(1): 77-83, jan.-fev. 2011. ilus, tab
Artigo em Português | LILACS | ID: lil-576084

RESUMO

O Fator Capacidade de Fósforo (FCP) é definido pela razão de equilíbrio entre o fator quantidade de P (Q) e o fator intensidade (I) e representa uma medida da capacidade do solo em manter um determinado nível de P em solução. As características e o teor dos constituintes minerais da fração argila são responsáveis por uma maior ou menor FCP, interferindo nas relações solo-planta. Por outro lado, o pH do solo tem, em alguns casos, mostrado-se com efeito na adsorção e, em outros, com pequena e não consistente alteração na Capacidade Máxima de Adsorção de P (CMAP). Objetivou-se, neste trabalho, determinar o FCP de solos mineralogicamente diferentes em Pernambuco; correlacionar características físicas e químicas dos solos com o FCP; e avaliar o efeito do pH na CMAP. Amostras subsuperficiais de quatro solos, mineralogicamente diferentes, foram caracterizadas química e fisicamente e determinado o FCP. Essas amostras foram corrigidas com CaCO3 e MgCO3 na proporção 4:1 e incubadas por 30 dias, com exceção do Vertissolo. Determinou-se a CMAP antes e após a correção dos solos. O experimento consistiu de um fatorial 4 x 2 (quatro solos com e sem correção), distribuídos em blocos ao acaso, com três repetições. As características dos solos que melhor refletiram o FCP foram o P remanescente (P-rem) e a CMAP. Independentemente dos constituintes mineralógicos da fração argila, solos com elevados teores de alumínio apresentaram aumento da CMAP com a correção. A energia de adsorção (EA) nos solos corrigidos foi, em média, significativamente menor, independentemente do solo.


Phosphate Maximum Capacity (FCP) is defined by the ratio of equilibrium between the amount of factor P (Q) and factor intensity (I) and represents a measure of the soil ability to maintain a certain level of P in solution. The characteristics and content of the constituents of clay minerals are responsible for a greater or lesser FCP, interfering in soil-plant relations. Moreover, the soil pH has affected adsorption, and in other cases, it has shown small and inconsistent change in the maximum adsorption capacity of P (CMAP). Thus, this study aimed to determine the different FCP soil mineralogy in Pernambuco; to correlate physical and chemical characteristics of soils with PBC and to evaluate the effect of pH on the CMAP. Subsurface soil samples from four different soils were characterized chemically and physically determined, and the PBC was determined. These samples were corrected with CaCO3 and MgCO3 in a 4:1 ratio and incubated for 30 days, except the Vertisol. The CMAP was determined before and after correction of the soil. The experiment consisted of a 4 x 2 factorial (four soils with and without correction), distributed in randomized blocks with three replicates. Soil characteristics that best reflected the PBC were the remaining P (P-rem) and MPAC. Regardless of the constituents of clay mineralogy, soil with high aluminum levels had increased CMAP after correction. The energy of adsorption (EA) in the limed soils was on average significantly lower, regardless of the soil.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA