Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Health ; 21(1): 23, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35139875

RESUMO

BACKGROUND: 2,4-Dichlorophenoxyacetic acid (2,4-D) is one of the most extensively used herbicides in the United States. In 2012, 2,4-D was the most widely used herbicide in non-agricultural settings and the fifth most heavily applied pesticide in the US agricultural sector. The objective of this study was to examine trends in 2,4-D urinary biomarker concentrations to determine whether increases in 2,4-D application in agriculture are associated with increases in biomonitoring levels of urine 2,4-D. METHODS: Data from the National Health and Nutrition Examination Survey (NHANES) with available urine 2,4-D biomarker measurements from survey cycles between 2001 and 2014 were utilized. Urine 2,4-D values were dichotomized using the highest limit of detection (LOD) across all cycles (0.40 µg/L or 0.4 ppb). Agricultural use of 2,4-D was estimated by compiling publicly available federal and private pesticide application data. Logistic regression models adjusted for confounders were fitted to evaluate the association between agricultural use of 2,4-D and urine 2,4-D level above the dichotomization threshold. RESULTS: Of the 14,395 participants included in the study, 4681 (32.5%) had urine 2,4-D levels above the dichotomization threshold. The frequency of participants with high 2,4-D levels increased significantly (p < .0001), from a low of 17.1% in 2001-2002 to a high of 39.6% in 2011-2012. The adjusted odds of high urinary 2,4-D concentrations associated with 2,4-D agricultural use (per ten million pounds applied) was 2.268 (95% CI: 1.709, 3.009). Children ages 6-11 years (n = 2288) had 2.1 times higher odds of having high 2,4-D urinary concentrations compared to participants aged 20-59 years. Women of childbearing age (age 20-44 years) (n = 2172) had 1.85 times higher odds than men of the same age. CONCLUSIONS: Agricultural use of 2,4-D has increased substantially from a low point in 2002 and it is predicted to increase further in the coming decade. Because increasing use is likely to increase population level exposures, the associations seen here between 2,4-D crop application and biomonitoring levels require focused biomonitoring and epidemiological evaluation to determine the extent to which rising use and exposures cause adverse health outcomes among vulnerable populations (particularly children and women of childbearing age) and highly exposed individuals (farmers, other herbicide applicators, and their families).


Assuntos
Herbicidas , Praguicidas , Ácido 2,4-Diclorofenoxiacético/urina , Agricultura , Biomarcadores/urina , Criança , Exposição Ambiental , Feminino , Herbicidas/toxicidade , Humanos , Masculino , Inquéritos Nutricionais , Praguicidas/urina
2.
Environ Health ; 20(1): 119, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34784917

RESUMO

BACKGROUND: Epistemological biases in environmental epidemiology prevent the full understanding of how racism's societal impacts directly influence health outcomes. With the ability to focus on "place" and the totality of environmental exposures, environmental epidemiologists have an important opportunity to advance the field by proactively investigating the structural racist forces that drive disparities in health. OBJECTIVE: This commentary illustrates how environmental epidemiology has ignored racism for too long. Some examples from environmental health and male infertility are used to illustrate how failing to address racism neglects the health of entire populations. DISCUSSION: While research on environmental justice has attended to the structural sources of environmental racism, this work has not been fully integrated into the mainstream of environmental epidemiology. Epidemiology's dominant paradigm that reduces race to a mere data point avoids the social dimensions of health and thus fails to improve population health for all. Failing to include populations who are Black, Indigenous, and people of color (BIPOC) in health research means researchers actually know very little about the effect of environmental contaminants on a range of population health outcomes. This commentary offers different practical solutions, such as naming racism in research, including BIPOC in leadership positions, mandating requirements for discussing "race", conducting far more holistic analyses, increasing community participation in research, and improving racism training, to address the myriad of ways in which structural racism permeates environmental epidemiology questions, methods, results and impacts.


Assuntos
Racismo , Racismo Sistêmico , Saúde Ambiental , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...